Skip to main content
Log in

Precipitation Behavior of Carbide and its Effect on the Mechanical Properties of a Novel Fe60Co10Cr10Ni10Mo5V5 Medium-Entropy Alloy

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Carbide precipitates are effective for improving the strength and stability of high-entropy alloys. In this work, novel-designed Fe60Co10Cr10Ni10Mo5V5 medium-entropy alloys (MEAs) containing 1 wt.% carbon were prepared by vacuum arc melting followed by solid solution treatment and aging. The effects of aging on the microstructure and mechanical properties of the MEAs were investigated. The results showed that the microstructure of the solution-treated alloy was comprised of the face-centered cubic (FCC) matrix, coarse M2C/MC carbides, and tiny fine undissolved MC precipitates distributed on the grain boundaries and inside the grains. A high number density of cube-shaped MC precipitates, with an approximate mean size of 24 nm precipitate within the FCC matrix in the case of aging at 800°C for 2 h, contribute to the highest hardness and tensile strength of the sample without sacrificing its elongation. With increasing aging temperature and time, the size of the MC precipitates increased while their volume fraction decreased. The strengthening effect can be attributed to the combination of the precipitation strengthening and solid solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  3. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Science 362, 933 (2018).

    Article  Google Scholar 

  4. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  5. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Acta Mater. 128, 292 (2017).

    Article  Google Scholar 

  6. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Intermetallics 55, 9 (2014).

    Article  Google Scholar 

  7. G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, and E.P. George, J. Alloys Compd. 746, 244 (2018).

    Article  Google Scholar 

  8. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scr. Mater. 68, 526 (2013).

    Article  Google Scholar 

  9. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  10. D. Ikeuchi, D.J. King, K.J. Laws, A.J. Knowles, R.D. Aughterson, G.R. Lumpkin, and E.G. Obbard, Scr. Mater. 158, 141 (2019).

    Article  Google Scholar 

  11. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Acta Mater. 65, 85 (2014).

    Article  Google Scholar 

  12. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu, Adv. Mater. 29, 1701678 (2017).

    Article  Google Scholar 

  13. N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Mater. Lett. 211, 87 (2018).

    Article  Google Scholar 

  14. M. Feuerbacher, M. Heidelmann, and C. Thomas, Mater. Res. Lett. 3, 1 (2015).

    Article  Google Scholar 

  15. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, JOM 66, 1984 (2014).

    Article  Google Scholar 

  16. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang, Mater. Des. 96, 10 (2016).

    Article  Google Scholar 

  17. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  18. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Acta Mater. 116, 332 (2016).

    Article  Google Scholar 

  19. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).

    Article  Google Scholar 

  20. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Intermetallics 60, 1 (2015).

    Article  Google Scholar 

  21. R. Zhou, Y. Liu, B. Liu, J. Li, and Q.H. Fang, Intermetallics 106, 20 (2019).

    Article  Google Scholar 

  22. N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, and E.P. George, J. Alloys Compd. 792, 1028 (2019).

    Article  Google Scholar 

  23. C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoixd, B. Malardc, and C. Curfse, Int. J. Mater. Res. 102, 538 (2011).

    Article  Google Scholar 

  24. R.A. Mesquita, C.A. Barbosa, E. Morales, and H.J. Kestenbach, Metall. Mater. Trans. A 42, 461 (2011).

    Article  Google Scholar 

  25. H. Wang, L. Hou, J. Zhang, L. Lu, H. Cui, and J. Zhang, Mater. Charact. 106, 245 (2015).

    Article  Google Scholar 

  26. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, Scr. Mater. 72–73, 5 (2014).

    Article  Google Scholar 

  27. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227 (2016).

    Article  Google Scholar 

  28. J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B. Lee, and H.S. Kim, Acta Mater. 161, 388 (2018).

    Article  Google Scholar 

  29. P. Ou, H. Xing, and J. Sun, Metall. Mater. Trans. A 46, 1 (2015).

    Article  Google Scholar 

  30. X.F. Zhou, W.T. Li, H.B. Jiang, F. Fang, Y.Y. Tu, and J.Q. Jiang, Metall. Mater. Trans. A 50, 1682 (2019).

    Article  Google Scholar 

  31. Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, and C.T. Liu, Scr. Mater. 87, 45 (2014).

    Article  Google Scholar 

  32. Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, and W. Guo, Acta Mater. 120, 228 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Scientific Research Project Fund of Jiangxi Provincial Education Department (Grant Number GJJ180479), Open Foundation of State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (Grant Number 2018-Z01), Key Research and Development Project of Jiangxi Province (Grant Number 2019BBEL50016), Natural Science Foundation of Jiangxi Province (Grant Number 20202BABL204010), and Program of the University Students’ Innovation and Pioneering (Grant No. DC2019-034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longgang Hou or Hongjin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hong, D., Hou, L. et al. Precipitation Behavior of Carbide and its Effect on the Mechanical Properties of a Novel Fe60Co10Cr10Ni10Mo5V5 Medium-Entropy Alloy. JOM 73, 668–678 (2021). https://doi.org/10.1007/s11837-020-04528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04528-3

Navigation