Skip to main content
Log in

Lyapunov–Sylvester computational method for numerical solutions of a mixed cubic-superlinear Schrödinger system

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper a nonlinear coupled Schrödinger system in the presence of mixed cubic and superlinear power laws is considered. A non standard numerical method is developed to approximate the solutions in higher dimensional case. The idea consists in transforming the continuous system into an algebraic quasi linear dynamical discrete one leading to generalized semi-linear operators. Next, the discrete algebraic system is studied for solvability, stability and convergence. At the final step, numerical examples are provided to illustrate the efficiency of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abazari R (2011) Numerical simulation of coupled Nonlinear Schrödinger equation by RDTM and comparison with TDM. J. Appl. Sci. 11(20):3454–3463

    Article  Google Scholar 

  2. Aminikhah H, Pournasiri F, Mehrdoust F (2016) A novel effective approach for systems of coupled Schrödinger equation. Pramana J. Phys. Indian Acad. Sci. 86(1):19–30

    Google Scholar 

  3. Agrawal GP (1995) Nonlinear fiber optics. Academic Press, New York

    MATH  Google Scholar 

  4. Aitchison JS, Weiner AM, Silberberg Y, Leaird DE, Oliver MK, Jackel JL, Smith PWE (1991) Experimental observation of spatial soliton interactions. Opt. Lett. 16(1):15–17

    Article  Google Scholar 

  5. Bartels RH, Stewart GW (1972) Algorithm 432: solution of the matrix equation AX + XB = C. Commun. ACM 15(9):820–826

    Article  MATH  Google Scholar 

  6. Ben Mabrouk A, Ayadi M (2008) Lyapunov type operators for numerical solutions of PDEs. Appl Math Comput 204:395–407

    MathSciNet  MATH  Google Scholar 

  7. Ben Mabrouk A, Ben Mohamed ML, Omrani K (2007) Finite difference approximate solutions for a mixed sub-superlinear equation. Appl Math Comput 187:1007–1016

    MathSciNet  MATH  Google Scholar 

  8. Benci V, Fortunato DF (2002) Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev Math Phys 14(04):409–420

    Article  MathSciNet  MATH  Google Scholar 

  9. Berkhoer AL, Zakharov VE (1970) Self excitation of waves with different polarizations in nonlinear media. JETP 31(3):486–490

    Google Scholar 

  10. Berestycki H, Lions PL (1983) Nonlinear scalar field equations I and II. Arch Rat Anal 82, 333–345 and 347–375

  11. Bhakta JC, Gupta MR (1982) Stability of solitary wave solutions of simultaneous nonlinear Schrödinger equations. J Plasma Phys 28(3):379–383

    Article  Google Scholar 

  12. Bezia A, Ben Mabrouk A, Betina K (2016) Lyapunov-Sylvester operators for (2+1)-Boussinesq equation. Electron J Differ Equ 286:1–19

    MathSciNet  MATH  Google Scholar 

  13. Bezia A, Ben Mabrouk A (2018) Finite difference method for (2+1)-Kuramoto-Sivashinsky equation. J Partial Differ Equ 31:193–213

    Article  MathSciNet  MATH  Google Scholar 

  14. Bratsos AG (2000) A linearized finite-difference method for the solution of the nonlinear cubic Schrödinger equation. Commun Appl Anal 4(1):133–139

    MathSciNet  MATH  Google Scholar 

  15. Bratsos AG (2001) A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation. Korean J Comput Appl Math 8(3):459–467

    Article  MathSciNet  MATH  Google Scholar 

  16. Cartan H (1967) Differential Calculus, Kershaw Publishing Company, London 1971, Translated from the original French text Calcul differentiel, first published by Hermann,

  17. Chaib K (2003) Necessary and sufficient conditions of existence for a system involving the \(p\)-Laplacian \((0<p<N)\). J Differ Equ 189:513–525

    Article  MathSciNet  MATH  Google Scholar 

  18. Chakravarty S, Ablowitz MJ, Sauer JR, Jenkins RB (1995) Multisoliton interactions and wavelength-division multiplexing. Opt Lett 20(2):136–138

    Article  Google Scholar 

  19. Chow KW (2001) Periodic solutions for a system of four coupled nonlinear Schrdinger equations. Phys Lett A 285:319–326

    Article  MathSciNet  MATH  Google Scholar 

  20. Chteoui R, Ben Mabrouk A (2017) A generalized Lyapunov-Sylvester computational method for numerical solutions of NLS equation with singular potential. Anal Theory Appl 33:333–354

    Article  MathSciNet  MATH  Google Scholar 

  21. Dhar AK, Das KP (1991) Fourth-order nonlinear evolution equation for two Stokes wave trains in deep water. Phys Fluids A Fluid Dyn 3(12):3021–3026

    Article  MATH  Google Scholar 

  22. Golub GH, Nash S, Van Loan C (1979) A Hessenberg-Schur method for the matrix problem \(AX + XB = C\). IEEE Trans Autom Control AC 24(6):909–913

    Article  MATH  Google Scholar 

  23. Gupta MR, Som BK, Dasgupta B (1981) Coupled nonlinear Schrödinger equations for Langmuir and elecromagnetic waves and extension of their modulational instability domain. J Plasma Phys 25(3):499–507

    Article  Google Scholar 

  24. Guo Y, Wang JM, Zhao DX (2016) Stability of an interconnected Schrödinger-heat system in a torus region. Math Methods Appl Sci 39(13):3735–3749

    Article  MathSciNet  MATH  Google Scholar 

  25. Hioe FT (1998) Solitary waves for two and three coupled nonlinear Schrödinger equations. Phys Rev E 58(5):6700–6707

    Article  MathSciNet  Google Scholar 

  26. Jameson A (1968) Solution of equation \(AX+XB=C\) by inversion of an \(M\times M\) or \(N\times N\) matrix. SIAM J Appl Math 16(5):1020–1023

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanna T, Lakshmanan V, Dinda PT, Akhmediev N (2006) Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys Rev E 73(2):026604

    Article  MathSciNet  Google Scholar 

  28. Kirrinni P (2001) Fast algorithms for the Sylvester equation \(AX-XB^{T}=C\). Theor Comput Sci 259(1–2):623–638

    Article  Google Scholar 

  29. Lamb GL (1980) Elements of soliton theory. Wiley, New York

    MATH  Google Scholar 

  30. Lancaster P (1970) Explixit solutions of linear matrix equations. SIAM Rev 12(4):544–566

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax PD, Richtmyer RD (1956) Survey of the stability of linear finite difference equations. Commun Pure Appl Math 9:267–293

    Article  MathSciNet  MATH  Google Scholar 

  32. Menyuk CR (1988) Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes. J Opt Soc Am B 5(2):392–402

    Article  Google Scholar 

  33. Mokhtari R, Samadi Toodar A, Chegini NG (2011) Numerical simulation of coupled nonlinear Schrdinger equations using the generalized differential quadrature method. J Chin Phys Lett 28(2):020202

    Article  MATH  Google Scholar 

  34. Mollenauer LF, Evangelides SG, Gordon JP (1991) Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers. J Lightwave Technol 9:362–367

    Article  Google Scholar 

  35. Pinar Z, Deliktas E (2017) Solution behaviors in coupled Schródinger equations with full-modulated nonlinearities. In: AIP Conference Proceedings, Vol 1815, pp 080019

  36. Ping L, Lou SY (2009) Coupled nonlinear Schrödinger equation: Symmetries and exact solutions. Commun Theor Phys 51(1):27–34

    Article  MathSciNet  MATH  Google Scholar 

  37. Quaas A, Sirakov B (2009) Existence and non-existence results for fully nonlinear elliptic systems. Indiana Univ Math J 58(2):751–788

    Article  MathSciNet  MATH  Google Scholar 

  38. Ray SS (2007) Solution of the coupled Klein-Gordon Schrödinger equation using the modified decomposition method. Int J Nonlinear Sci 4(3):227–234

    MathSciNet  MATH  Google Scholar 

  39. Roth WE (1952) The equations \(AX-YB=C\) and \(AX-XB=C\) in matrices. Proc Am Math Soc 3(3):392–396

    MATH  Google Scholar 

  40. Saanouni T (2016) A note on coupled focusing nonlinear Schrdinger equations. J Appl Anal Int J 95(9):2063–2080

    Article  MATH  Google Scholar 

  41. Shalaby M, Reynaud F, Barthelemy A (1992) Experimental observation of spatial soliton interactions with a \(\pi /2\) relative phase difference. Opt Lett 17(11):778–780

    Article  Google Scholar 

  42. Simoncini V (2013) Computatioanl methods for linear matrix equations, Course in Dipartimento di Matematica, Universita di Bologna, Piazza di Porta San Donato 5, I-40127 Bologna, Italia, March 12

  43. Strauss WA (1977) Existence of solitary waves in higher dimensions. Commun Math Phys 55:149–162

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsuchida T, Ujino H, Wadati M (1999) Integrable semi-discretization of the coupled nonlinear Schrödinger equations. J Phys A Math Gen 32:2239–2262

    Article  MATH  Google Scholar 

  45. Xu Q-B, Chang Q-S (2010) New numerical methods for the coupled nonlinear Schrödinger equations. Acta Math Appl Sin English Ser 26(2):205–218

    Article  MathSciNet  MATH  Google Scholar 

  46. Xi T-T, Zhang J, Lu X, Hao Z-Q, Hui Y, Dong Q-L, Wu H-C (2006) Generation of third harmonic emission in propagation of femtosecond laser pulses in air. Chin Phys Soc 15(9):2025–2029

    Article  Google Scholar 

  47. H-Q Zhang, Meng X-H, Xu T, Li L-L, Tian B (2007) Interactions of bright solitons for the (2+1)-dimensional coupled nonlinear Schrödinger equations from optical fibres with symbolic computation. Physica Scripta 75(4):537–542

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhida Y (1987) Multi-soliton solutions of coupled nonlinear Schrödinger Equations. J Chin Phys Lett 4(4):185–187

    Article  Google Scholar 

  49. Zhou S, Cheng X (2010) Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains. Math Comput Simul 80(12):2362–2373

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouar Ben Mabrouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chteoui, R., Aljohani, A.F. & Ben Mabrouk, A. Lyapunov–Sylvester computational method for numerical solutions of a mixed cubic-superlinear Schrödinger system. Engineering with Computers 38 (Suppl 2), 1081–1094 (2022). https://doi.org/10.1007/s00366-020-01264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01264-9

Keywords

Navigation