Skip to main content
Log in

Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2021

This article has been updated

Abstract

The method of contact glow discharge with the using of “sacrificial” silver anodes have been proposed for synthesis of silver nanoparticles (AgNPs) stabilized by polyvinylpyrrolidone (PVP). Using transmission electron microscopy, it was found that the mean size of AgNPs decrease from 10 to 5 nm with increasing of PVP concentration from 2.5 to 10 g/L. At the same time, the polydispersity index of AgNPs non-monotonically depends on concentration of stabilizer and the narrowest size distribution (less than 15%) was observed at PVP concentration equal to 5 g/L. The electrochemical investigations of Ag anodic dissolution associated with the recorded UV-Vis spectra of the obtained AgNPs solutions suggest that (i) the rate of silver dissolution depend on the nature of regulating agent—NaOH or CH3COONa; (ii) silver anodes are not passivated in the presence of PVP; (iii) unlike to the process of chemical reduction of silver ions by PVP using of the contact glow discharge technique provides a pseudo-stationary process mode, i.e., the stability of rates of nucleation and growth of AgNPs via stability both of Ag+ and solvated electrons concentrations that leads to formation of nearly monodisperse nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Natsuki J, Natsuki T, Hashimot Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4:325–332. https://doi.org/10.11648/j.ijmsa.20150405.17

    Article  CAS  Google Scholar 

  2. Paramasivam G, Kayambu N, Rabel AM, Sundramoorthy AK, Sundaramurthy A (2017) Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 49:45–65. https://doi.org/10.1016/j.actbio.2016.11.066

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Shen W, Xue J, Liu Y, Liu Y, Yan P, Liu J, Tang J (2018) Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett 13:54. https://doi.org/10.1186/s11671-018-2450-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chaiendoo K, Boonchiangma S, Promarak V, Ngeontae W (2018) New sensitive strategy for formaldehyde sensing by in situ generation of luminescent silver nanoclusters. Colloid Polym Sci 296(12):1995–2004. https://doi.org/10.1007/s00396-018-4427-3

    Article  CAS  Google Scholar 

  5. Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6:34–56. https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  6. Pareek V, Bhargava A, Gupta R, Jain N, Panwar J (2017) Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9:527–544. https://doi.org/10.1166/asem.2017.2027

    Article  CAS  Google Scholar 

  7. Besenhard MO, Baber R, LaGrow AP, Mazzei L, Thanh NTK, Gavriilidis A (2018) New insight into the effect of mass transfer on the synthesis of silver and gold nanoparticles. CrystEngComm 20:7082–7093. https://doi.org/10.1039/c8ce01014e

    Article  CAS  Google Scholar 

  8. Xi Z, Ye H, Xia X (2018) Engineered noble-metal nanostructures for in vitro diagnostics. Chem Mater 30:8391–8414. https://doi.org/10.1021/acs.chemmater.8b04152

    Article  CAS  Google Scholar 

  9. Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A (2017) Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521. https://doi.org/10.1021/acs.chemrev.7b00194

    Article  CAS  PubMed  Google Scholar 

  10. Fox CM, Yu T, Breslin CB (2020) Electrochemical formation of silver nanoparticles and their catalytic activity immobilised in a hydrogel matrix. Colloid Polym Sci 298:549–558. https://doi.org/10.1007/s00396-020-04624-5

    Article  CAS  Google Scholar 

  11. Blandón L, Vázquez MV, Benjumea DM, Ciro G (2012) Electrochemical synthesis of silver nanoparticles and their potential use as antimicrobial agent: a case study on Escherichia coli. Port Electrochim Acta 30(2):135–144. https://doi.org/10.4152/pea.201202135

    Article  CAS  Google Scholar 

  12. Dobre N, Petica A, Buda M, Anicăi L, Vişan T (2014) Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Sci Bull Ser B 76:127–136

    Google Scholar 

  13. Yanilkin VV, Nasretdinova GR, Kokorekin VA (2018) Mediated electrochemical synthesis of metal nanoparticles. Russ Chem Rev 87:1080–1110. https://doi.org/10.1070/RCR4827

    Article  CAS  Google Scholar 

  14. Kuntyi OI, Kytsya AR, Mertsalo IP, Mazur AS, Zozula GI, Bazylyak LI, Topchak RV (2019) Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym Sci 297:689–695. https://doi.org/10.1007/s00396-019-04488-4

    Article  CAS  Google Scholar 

  15. Kuntyi O, Mazur A, Kytsya A, Karpenko O, Bazylyak L, Mertsalo I, Pokynbroda T, Prokopalo A (2020) Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro Nano Lett 15(12):802–807. https://doi.org/10.1049/mnl.2020.0195

    Article  CAS  Google Scholar 

  16. Toriyabe Y, Watanabe S, Yatsu S, Shibayama T, Mizuno T (2007) Controlled formation of metallic nanoballs during plasma electrolysis. Appl Phys Lett 91:041501–041503. https://doi.org/10.1063/1.2760042

    Article  CAS  Google Scholar 

  17. Lal A, Bleuler H, Wüthrich R (2008) Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem Commun 10:488–491. https://doi.org/10.1016/j.elecom.2008.01.017

    Article  CAS  Google Scholar 

  18. Wüthrich R, Allagui A (2010) Building micro and nanosystems with electrochemical discharges. Electrochim Acta 55:8189–8196. https://doi.org/10.1016/j.electacta.2010.01.096

    Article  CAS  Google Scholar 

  19. Tochikubo F, Shimokawa Y, Shirai N, Uchida S (2014) Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid. Jpn J Appl Phys 53:126201–126208. https://doi.org/10.7567/JJAP.53.126201

    Article  CAS  Google Scholar 

  20. Shirai N, Uchida S, Tochikubo F (2014) Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid. Jpn J Appl Phys 53:046202–046205. https://doi.org/10.7567/JJAP.53.046202

    Article  CAS  Google Scholar 

  21. Oka Y, Kuroshima T, Sawachika K, Yamashita M, Sakao M, Ohnishi K, Asami K, Yatsuzuka M (2019) Preparation of silver nanocolloidal solution by cavitation bubble plasma. Vacuum 167:530–535. https://doi.org/10.1016/j.vacuum.2018.05.013

    Article  CAS  Google Scholar 

  22. Rumbach P, Go DB (2017) Perspectives on plasmas in contact with liquids for chemical processing and materials synthesis. Top Catal 60:799–811. https://doi.org/10.1007/s11244-017-0745-9

    Article  CAS  Google Scholar 

  23. Lin L, Starostin SA, Li S, Hessel V (2018) Synthesis of metallic nanoparticles by microplasma. Phys Sci Rev 3:1–91. https://doi.org/10.1515/psr-2017-0121

    Article  CAS  Google Scholar 

  24. Tseng K-H, Chen YC, Shyue JJ (2011) Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions. J Nanopart Res 13:1865–1872. https://doi.org/10.1007/s11051-010-9937-y

    Article  CAS  Google Scholar 

  25. Ashkarran AA (2010) A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr Appl Phys 10:1442–1447. https://doi.org/10.1016/j.cap.2010.05.010

    Article  Google Scholar 

  26. Zhang YT, Guo Y, Ma TC (2011) Plasma catalytic synthesis of silver nanoparticles. Chin Phys Lett 28:105201–105203. https://doi.org/10.1088/0256-307X/28/10/105201

    Article  CAS  Google Scholar 

  27. Sato S, Mori K, Ariyada O, Atsushi H, Yonezawa T (2011) Synthesis of nanoparticles of silver and platinum by microwave-induced plasma in liquid. Surf Coat Technol 206:955–958. https://doi.org/10.1016/j.surfcoat.2011.03.110

    Article  CAS  Google Scholar 

  28. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409. https://doi.org/10.1016/j.eurpolymj.2011.04.002

    Article  CAS  Google Scholar 

  29. Nam S, Ali DM, Kim J (2016) Characterization of alginate/silver nanobiocomposites synthesized by solution plasma process and their antimicrobial properties. J Nanomater 2016:1–9. https://doi.org/10.1155/2016/4712813

    Article  CAS  Google Scholar 

  30. Huang XZ, Zhong XX, Lu Y, Li YS, Rider AE, Furman SA, Ostrikov K (2013) Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnol 24:095604. https://doi.org/10.1088/0957-4484/24/9/095604

    Article  CAS  Google Scholar 

  31. Kim SC, Kim SM, Yoon GJ, Nam SW, Lee SY, Kim JW (2014) Gelatin-based sponge with Ag nanoparticles prepared by solution plasma: fabrication, characteristics, and their bactericidal effect. Curr Appl Phys 14:S172–S179. https://doi.org/10.1016/j.cap.2013.12.032

    Article  Google Scholar 

  32. Jin SH, Kim SM, Lee SY, Kim JW (2014) Synthesis and characterization of silver nanoparticles using a solution plasma process. J Nanosci Nanotechnol 14:8094–8097. https://doi.org/10.1166/jnn.2014.9428

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110. https://doi.org/10.1006/jssc.1996.0015

    Article  CAS  Google Scholar 

  34. Malina D, Sobczak-Kupiec A, Wzorek Z, Kowalski Z (2012) Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig J Nanomater Biostruct 7:1527–1534

    Google Scholar 

  35. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904. https://doi.org/10.1021/jp0349031

    Article  CAS  Google Scholar 

  36. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94(2-3):449–453. https://doi.org/10.1016/j.matchemphys.2005.05.005

    Article  CAS  Google Scholar 

  37. Hoppe CE, Lazzari M, Pardinas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly (N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034. https://doi.org/10.1021/la060885d

    Article  CAS  PubMed  Google Scholar 

  38. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys E 27:104–112. https://doi.org/10.1016/j.physe.2004.10.014

    Article  CAS  Google Scholar 

  39. Kytsya AR, Reshetnyak OV, Bazylyak LI, Hrynda YM (2014) UV/VIS-spectra of silver nanoparticles as characteristics of their sizes and sizes distribution. In: Zaikov GE, Bazylyak LI, Haghi AK (eds) Functional polymer blends and nanocomposites: a practical engineering approach1st edn. Apple Academic Press, New York, pp 231–239. https://doi.org/10.1201/b16895

    Chapter  Google Scholar 

  40. Sandoe HE, Watzky MA, Diaz SA (2019) Experimental probes of silver metal nanoparticle formation kinetics: comparing indirect versus more direct methods. Int J Chem Kinet 51:861–871. https://doi.org/10.1002/kin.21315

    Article  CAS  Google Scholar 

  41. Patakfalvi R, Papp S, Dekany I (2007) The kinetics of homogeneous nucleation of silver nanoparticles stabilized by polymers. J Nanopart Res 9:353–364. https://doi.org/10.1007/s11051-006-9139-9

    Article  CAS  Google Scholar 

  42. Kytsya A, Bazylyak L, Simon P, Zelenina I, Antonyshyn I (2019) Kinetics of Ag300 nanoclusters formation: the catalytically effective nucleus via a steady-state approach. Int J Chem Kinet 51:266–273. https://doi.org/10.1002/kin.20913

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the partial financial support of the National Research Foundation of Ukraine (Agreement 165/02.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. R. Kytsya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntyi, O.I., Kytsya, А.R., Bondarenko, A.B. et al. Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid Polym Sci 299, 855–863 (2021). https://doi.org/10.1007/s00396-021-04811-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04811-y

Keywords

Navigation