Skip to main content
Log in

A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO) to Enhance Phototherapeutic Efficacy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Phototherapies including photodynamic therapy (PDT) and photothermal therapy (PTT) are the most promising and non-invasive cancer treatments. However, the efficacy of mono-therapy of PDT or PTT is often limited by the phototherapeutic defects such as low light penetration depth of photosensitizers and insufficiency of photothermal agents. Peroxynitrite (ONOO) has been proved to be an efficient oxidizing and nitrating agent that involves in various physiological and pathological processes. Therefore, ONOO produced in tumor site could be an effective treatment in cancer therapy. Herein, a novel cyanine dye-based (Cy7) polymer nanoplatform is developed for enhanced phototherapy by in situ producing ONOO. The Cy7 units in the nanoparticles can not only be served as the photosensitizer to produce reactive oxygen species (ROS) including singlet oxygen and superoxide anion for PDT, but also be used as a heat source for PTT and the release of NO gas from N-nitrosated napthalimide (NORM) at the same time. Since NO can react quickly with superoxide anion to generate ONOO, the enhanced phototherapy could be achieved by in situ ONOO produced by PCy7-NO upon exposure to the near infrared (NIR) light. Therefore, the NIR-triggered Cy7-based nanoplatform for ONOO-enhanced phototherapy may provide a new perspective in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Josefsen, L. B.; Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2, 916–966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. In press. doi: https://doi.org/10.1007/s10118-021-2517-z.

  3. Cai, Y.; Liang, P. P.; Tang, Q. Y.; Yang, X. Y.; Si, W. L.; Huang, W.; Zhang, Q.; Dong, X. C. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 2017, 11, 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  4. He, Z.; Zhao, L. L.; Zhang, Q.; Chang, M. J.; Li, C. X.; Zhang, H. S.; Lu, Y; Che, Y. S. An acceptor-donor-acceptor structured small molecule for effective NIR triggered dual phototherapy of cancer. Adv. Funct. Mater. 2020, 30, 1910301.

    Article  CAS  Google Scholar 

  5. Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q.; Cui, H. D.; Ma, Y. F.; Cai, L. T. Cancer cell membrane-biomimetic nanoparticles for dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.

    Article  PubMed  CAS  Google Scholar 

  6. Li, J.; Jiang, R. C.; Wang, Q.; Li, X.; Hu, X. M.; Yuan, Y.; Lu, X. M.; Wang, W. J.; Huang, W.; Fan, Q. L. Semiconducting polymer panotheranostics for NIR-II/photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. Biomaterials 2019, 217, 119304.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, Y. L.; Ren, J. T.; Gao, H. Y.; Liu, J. W.; Xia, W. J.; Qiao, W. Q.; Wang, Z. Y. Characterizations and photothermal properties of narrow bandgap conjugated polymer nanoparticles. Chinese J. Polym. Sci. 2020, 38, 814–818.

    Article  CAS  Google Scholar 

  8. Zhang, Z.; Xue, Y.; Zhang, P.; Müller, A. H. E.; Zhang, W. A. Hollow polymeric capsules from POSS-based block copolymer for photodynamic therapy. Macromolecules 2016, 49, 8440–8448.

    Article  CAS  Google Scholar 

  9. Wang, Y.; Huang, X. Y.; Tang, Y. Y.; Zou, J. H.; Wang, P.; Zhang, Y. W.; Si, W. L.; Huang, W.; Dong, X. C. A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. Chem. Sci. 2018, 9, 8103–8109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yang, T.; Liu, L.; Deng, Y. B.; Guo, Z. Q.; Zhang, G. B.; Ge, Z. S.; Ke, H. T.; Chen, H. B. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv. Funct. Mater. 2020, 30, 1910301.

    Google Scholar 

  11. Wang, X. G.; Wu, L. F.; Zhou, Q. X. Study on photodynamic and photoresposive azo polyelectrolytes. Sci. China Mater. 2018, 61, 1325–1338.

    Google Scholar 

  12. Han, W. K.; Zhang, S.; Deng, R. Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Chinese J. Polym. Sci. 2000, 4, 337–342.

    Google Scholar 

  13. Yang, G.; Tian, J.; Chen, C.; Jiang, D.; Xue, Y.; Wang, C.; Gao, Y.; Zhang, W. A. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem. Sci. 2019, 10, 5766–5772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651–661.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, H. R.; Chao, Y.; Liu, J. J.; Zhu, W. W.; Wang, G. L.; Xu, L. G.; Liu, Z. G. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials 2018, 181, 310–317.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ding, Y.; Du, C.; Qian, J. W.; Dong, C. M. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett. 2019, 19, 4362–4370.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, X.; Du, J.; Guo, Z.; Yu, J.; Gao, Q.; Yin, W.; Zhu, S.; Gu, Z.; Zhao, Y. Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy. Adv. Sci. 2019, 6, 1801122.

    Article  Google Scholar 

  19. Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.

    Article  PubMed  CAS  Google Scholar 

  20. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

    Article  PubMed  CAS  Google Scholar 

  21. Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (Mxene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247.

    Article  PubMed  CAS  Google Scholar 

  22. Fan, W.; Yung, B. C.; Chen, X. Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy. Angew. Chem. Int. Ed. 2018, 57, 8383–8394.

    Article  CAS  Google Scholar 

  23. Sheng, D. L.; Liu, T. Z.; Deng, L. M.; Zhang, L.; Li, X. L.; Xu, J.; Hao, L.; Li, P.; Ran, H. T.; Chen, H. R.; Wang, Z. G. Perfluorooctyl Bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018, 165, 1–13.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, L.; Zhou, S. F.; Su, L.; Song, J. Gas-mediated cancer bioimaging and therapy. ACS Nano 2019, 13, 10887–10917.

    Article  PubMed  CAS  Google Scholar 

  25. Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang, D.; Yue, T.; Wang, G.; Wang, C.; Chen, C.; Cao, H.; Gao, Y. Peroxynitrite (ONOO) generation from the HA-TPP@NORM nanoparticles based on synergistic interactions between nitric oxide and photodynamic therapies for elevating anticancer efficiency. New J. Chem. 2020, 44, 162–170.

    Article  CAS  Google Scholar 

  27. Ferrer-Sueta, G.; Radi, R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS. Chem. Biol. 2009, 4, 161–177.

    Article  PubMed  CAS  Google Scholar 

  28. Szabo, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680.

    Article  PubMed  CAS  Google Scholar 

  29. Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991, 288, 481–487.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballa, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev. 2018, 118, 1338–1408.

    Article  PubMed  CAS  Google Scholar 

  31. Torreilles, F.; Salman-Tabcheh, S.; Guerin, M. C.; Torreilles, J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Rev. 1999, 30, 153–163.

    Article  PubMed  CAS  Google Scholar 

  32. Olson, L. P.; Bartberger, M. D.; Houk, K. N. Peroxynitrate and peroxynitrite: a complete basis set investigation of similarities and differences between these NOx species. J. Am. Chem. Soc. 2003, 125, 3999–4006.

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein, S.; Lind, J.; Merényi, G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 2005, 105, 2457–2470.

    Article  PubMed  CAS  Google Scholar 

  34. Du, Z.; Zhang, X.; Guo, Z.; Xie, J.; Dong, X.; Zhu, S.; Du, J.; Gu, Z.; Zhao, Y. X-Ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, 1804046.

    Article  Google Scholar 

  35. Hu, D.; Deng, Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.

    Article  PubMed  CAS  Google Scholar 

  36. Li, Y.; Liu, X.; Li, B.; Zheng, Y.; Han, Y.; Chen, D. F.; Yeung, K. W. K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. Near-Infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant staphylococcus aureus biofilm infection on bone implant. ACS Nano 2020, 14, 8157–8170.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, D.; Niu, L.; Qiao, Z.Y.; Cheng, D.B.; Wang, J.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796–3803.

    Article  PubMed  CAS  Google Scholar 

  38. Gao, S.; Zhang, W.; Wang, R.; Hopkins, S. P.; Spagnoli, J. C.; Racin, M.; Bai, L.; Li, L.; Jiang, W.; Yang, X.; Lee, C.; Nagata, K.; Howerth, E. W.; Handa, H.; Xie, J.; Ma, Q.; Kumar, A. Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. ACS Nano 2020, 14, 1468–1481.

    Article  PubMed  CAS  Google Scholar 

  39. Jiao, Y.; Yin, J.; He, H.; Peng, X.; Gao, Q.; Duan, C. Conformationally induced off-on cell membrane chemosensor targeting receptor protein-tyrosine kinases for in vivo and in vitro fluorescence imaging of cancers. J. Am. Chem. Soc. 2018, 140, 5882–5885.

    Article  PubMed  CAS  Google Scholar 

  40. Burks, P. T.; Garcia, J. V.; GonzalezIrias, R.; Tillman, J. T.; Niu, M.; Mikhailovsky, A. A.; Zhang, J.; Zhang, F.; Ford, P. C. Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters. J. Am. Chem. Soc. 2013, 135, 18145–18152.

    Article  PubMed  CAS  Google Scholar 

  41. Fan, J.; He, N.; He, Q.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y.; Huang, P.; Chen, X. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015, 7, 20055–20062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fan, J.; Song, J.; Liu, Y.; Yu, G.; Ma, Y.; Deng, Y.; He, N.; Zhang, F. Synthesis of biocompatible polymeric nanomaterial dually loaded with paclitaxel and nitric oxide for anti-MDR cancer therapy. RSC Adv. 2016, 6, 105871–105877.

    Article  CAS  Google Scholar 

  43. Wang, L.; Chang, Y.; Feng, Y.; Li, X.; Cheng, Y.; Jian, H.; Ma, X.; Zheng, R.; Wu, X.; Xu, K.; Zhang, H. Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy. Nano Lett. 2019, 19, 6800–6811.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, G. Y.; Zhang, S. C.; Shi, Y. H.; Huang, X. Y.; Tang, Y. Y.; Chen, P.; Si, W. L.; Huang, W.; Dong, X. C. “Wax-sealed” theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1804317.

    Article  Google Scholar 

  45. Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K. W. K.; Pan, H.; Wang, X.; Wu, S. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv. Mater. 2018, 30, 1801808.

    Article  Google Scholar 

  46. Zhang, Z.; Wu, J.; Shang, Z.; Wang, C.; Cheng, J.; Qian, X.; Xiao, Y.; Xu, Z.; Yang, Y. Photocalibrated NO release from N-nitrosated napthalimides upon one-photon or two-photon irradiation. Anal. Chem. 2016, 88, 7274–7280.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang, D.; Cheng, L.; Xue, Y.; Chen, C.; Wang, C.; Yang, G.; Xu, A.; Yang, Y.; Gao, Y.; Zhang, W. Modulation of the lifespan of C. elegans by the controlled release of nitric oxide. Chem. Sci. 2020, 11, 8785–8792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duan, Y.; Wang, Y.; Li, X.; Zhang, G.; Zhang, G.; Hu, J. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem. Sci. 2020, 11, 186–194.

    Article  PubMed  CAS  Google Scholar 

  49. Duong, H. T.; Jung, K.; Kutty, S. K.; Agustina, S.; Adnan, N. N.; Basuki, J. S.; Kumar, N.; Davis, T. P.; Barraud, N.; Boyer, C. Nanoparticle (star polymer) delivery of nitric oxide effectively negates pseudomonas aeruginosa biofilm formation. Biomacromolecules 2014, 15, 2583–2589.

    Article  PubMed  CAS  Google Scholar 

  50. Qin, L.; Xie, F.; Jin, X.; Liu, M. Driving helical packing of a cyanine dye on dendron nanofiber: gel-shrinkage-triggered chiral H-aggregation and enhanced enantiodiscrimination. Chemistry 2015, 21, 11300–11305.

    Article  PubMed  CAS  Google Scholar 

  51. Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B 2007, 851, 51–70.

    Article  CAS  Google Scholar 

  52. Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X. C.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of heat transfer dynamics from gold nanorods to the environment via time-resolved infrared spectroscopy. ACS Nano 2016, 10, 2144–2151.

    Article  PubMed  CAS  Google Scholar 

  53. Zou, L. L.; Wang, H.; He, B.; Zeng, L. J.; Tan, T.; Cao, H. Q.; He, X. Y.; Zhang, Z. W.; Guo, S. R.; Li, Y. P. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016, 6, 762–772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21875063), and the Science and Technology Commission of Shanghai Municipality for the Shanghai International Cooperation Program (No. 19440710600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Gao or Wei-An Zhang.

Electronic Supplementary Information

10118_2021_2540_MOESM1_ESM.pdf

A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO) to Enhance Phototherapeutic Efficacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, DW., Yang, GL. et al. A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO) to Enhance Phototherapeutic Efficacy. Chin J Polym Sci 39, 692–701 (2021). https://doi.org/10.1007/s10118-021-2540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2540-0

Keywords

Navigation