Skip to main content

Advertisement

Log in

Construction of Z-scheme Photocatalyst Containing ZnIn2S4, Co3O4-Photodeposited BiVO4 (110) Facets and rGO Electron Mediator for Overall Water Splitting into H2 and O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The self-assemble 0.5Pt-ZnIn2S4/rGO/Co3O4-BiVO4 (110) Z-scheme system photocatalysts were synthesized successfully, in which 0.5Pt-ZnIn2S4, rGO and Co3O4-BiVO4 (110) were as H2-photocatalyst, electron mediator and O2-photocatalyst, respectively. Herein, the preferred exposed (110) crystal facets of BiVO4 have great contribution to optimizing its photocatalytic oxidation performance. The Z-scheme system samples were used for photocatalytic water splitting to H2 and O2 in stoichiometric ratio without any sacrificial agents under visible light irradiation. SEM results clearly revealed the morphology and structure of Pt-ZnIn2S4, rGO and Co3O4-BiVO4 (110), suggesting that the three samples closely contacted with each other. Thus the electrons in the Z-scheme photocatalyst system could flow continuously in the photocatalytic water splitting process, which would induce the highly separation rate of photoinduced charge carriers and then accelerated the photocatalytic performance. Furthermore, rGO and Co3O4 were shown to be the critical factors for the improvment of photoinduced electron–hole pairs, thereby influencing the photocatalytic performance. In 0.5Pt-ZnIn2S4/2rGO/5Co3O4-BiVO4 (110) photocatalyst, the amount of the H2 and O2 could reach 294.3 μmol/g and 143.4 μmol/g, respectively (in 12 h). The mechanism for the photocatalytic overall water splitting was also discussed in detail.

Graphical Abstract

We confirmed that Z-scheme 0.5Pt-ZnIn2S4/rGO/Co3O4-BiVO4 (110) exhibit photocatalytic overall water splitting into H2 and O2 (294.3 and 143.4 μmol/g in 12 h). Here, 0.5Pt-ZnIn2S4, rGO and Co3O4-BiVO4 (110) act as H2-photocatalyst, electron-mediator and O2-photocatalyst, respectively. And the contact interface is favourable and then helpful for the electrons flow continuously during the photocatalytic reaction process. The electron mediator rGO and cocatalyst Co3O4 are responsible for the photoactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oshima T, Nishioka S, Kikuchi Y, Hirai S, Yanagisawa K, Eguchi M, Miseki Y, Yokoi T, Yui T, Kimoto K, Sayama K, Ishitani O, Mallouk T, Maeda K (2020) J Am Chem Soc 142:8412–8420

    Article  CAS  PubMed  Google Scholar 

  2. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) J Am Chem Soc 133:11054–11057

    Article  CAS  PubMed  Google Scholar 

  3. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) J Am Chem Soc 127:8286–8287

    Article  CAS  PubMed  Google Scholar 

  4. Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Langmuir 26:9161–9165

    Article  CAS  PubMed  Google Scholar 

  5. Higashi M, Abe R, Takata T, Domen K (2009) Chem Mater 21:1543–1549

    Article  CAS  Google Scholar 

  6. Kato H, Sasaki Y, Iwase A, Kudo A (2007) Bull Chem Soc Jpn 12:2457–2464

    Article  CAS  Google Scholar 

  7. Iwase A, Yoshino S, Takayama T, Ng YH, Amal R, Kudo A (2016) J Am Chem Soc 138:10260–10264

    Article  CAS  PubMed  Google Scholar 

  8. Iwashina K, Iwase A, Ng YH, Amal R, Kudo A (2015) J Am Chem Soc 137:604–607

    Article  CAS  PubMed  Google Scholar 

  9. Zuo G, Wang Y, Teo W, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y (2020) Angew Chem Int Ed 59:1–7

    Article  CAS  Google Scholar 

  10. Liu Q, Cao FR, Wu FL, Chen SM, Xiong J, Li L (2016) ACS Appl Mater Inter 8:26235–26243

    Article  CAS  Google Scholar 

  11. Wang SB, Guan BY, Wang X, Lou XWD (2018) J Am Chem Soc 140:15145–15148

    Article  CAS  PubMed  Google Scholar 

  12. Luo S, Ke J, Yuan MQ, Zhang Q, Xie P, Deng LD, Wang SB (2018) Appl Catal B: Environ 221:215–222

    Article  CAS  Google Scholar 

  13. Ou M, Nie HY, Zhong Q, Zhang SL, Zhong L (2015) Phys Chem Chem Phys 17:28809–28817

    Article  CAS  PubMed  Google Scholar 

  14. Ou M, Zhong Q, Zhang SL, Nie HY, Lv ZJ, Cai W (2016) Appl Catal B: Environ 193:160–169

    Article  CAS  Google Scholar 

  15. Zhou CG, Wang SM, Zhao ZY, Shi Z, Yan SC, Zou ZG (2018) Adv Func Marer 28:1801214

    Article  CAS  Google Scholar 

  16. Chen S, Huang DL, Xu P, Gong XM, Xue WJ, Lei L, Deng R, Li J, Li ZD (2020) ACS Catal 10:1024–1059

    Article  CAS  Google Scholar 

  17. Tachikawa T, Ochi T, Kobori Y (2016) ACS Catalysis 6:2250–2256

    Article  CAS  Google Scholar 

  18. Xu J, Wang W, Wang J, Liang Y (2015) Appl Surf Sci 349:529–537

    Article  CAS  Google Scholar 

  19. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Han H, Zhang F, Wang D, Li C (2014) Energy Environ Sci 7:1369–1376

    Article  CAS  Google Scholar 

  21. Tan HL, Wen XM, Amal R, Ng YH (2016) J phys Chem Let 7:1400–1405

    Article  CAS  Google Scholar 

  22. Wang DG, Jiang HF, Zong X, Xu Q, Ma Y, Li GL, Li C (2011) Chemistry 17:1275–1282

    Article  CAS  PubMed  Google Scholar 

  23. Darabdhara G, Das W (2019) J Hazard Mater 368:365–377

    Article  CAS  PubMed  Google Scholar 

  24. Sun ZH, Guo JJ, Zhu SM, Mao L, Ma J (2014) Di Zhang. Nanoscale 6:2186–2193

    Article  CAS  PubMed  Google Scholar 

  25. Zhang YY, Guo YP, Duan HN, Li H, Sun CY, Liu HZ (2014) Phys Chem Chem Phys 16:24519–24526

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Chen DR, Jiao XL (2006) J. Phys. Chem. B 110:2668–2673

    Article  CAS  PubMed  Google Scholar 

  27. Wang SM, Li DL, Sun C, Yang SG, Guan Y, He H (2006) Appl Catal B: Environ 144:885–892

    Article  CAS  Google Scholar 

  28. Long MC, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH (2006) J Phys Chem B 110:20211–20216

    Article  CAS  PubMed  Google Scholar 

  29. Porsgaard S, Merte LR, Ono LK, Behafarid F, Matos J, Helveg S, Salmeron M, Cuenya BR, Besenbacher F (2012) ASC Nano 6:10743–10749

    Article  CAS  Google Scholar 

  30. Xing J, Chen JF, Li YH, Yuan WT, Zhou Y, Zheng LR, Wang HF, Hu P, Wang Y, Zhao HJ, Wang Y, Yang HG (2014) Chemistry 20:2138–2144

    Article  CAS  PubMed  Google Scholar 

  31. Ren L, Ma LL, Jin L, Wang JB, Qiu MQ, Yu Y (2009) Nanotechnology 20:17579–17584

    Google Scholar 

  32. Wang M, Zheng HY, Liu Q, Niu C, Che YS, Dang MY (2013) Spectrochim. Acta Part A: Mol. Bio. 11:74–79

    Article  CAS  Google Scholar 

  33. Wan SP, Ou M, Zhong Q, Zhang SL, Song FJ (2017) Chem Eng J 325:690–699

    Article  CAS  Google Scholar 

  34. Bu YY, Chen ZY, Li WB (2014) Appl Catal B: Environ 144:622–630

    Article  CAS  Google Scholar 

  35. Kumar S, Kumar STB, Baruah A, Shanker V (2013) J. Phys. Chem. C. 117:26135–26143

    Article  CAS  Google Scholar 

  36. Wang YN, Guo LN, Zeng YQ, Guo HW, Wan SP, Ou M, Zhang SL, Zhong Q, Appl ACS (2019) Mater Interfaces 11:30673–30681

    Article  CAS  Google Scholar 

  37. Wang YN, Zhen WL, Zeng YQ, Wan SP, Guo HW, Zhang SL, Zhong Q (2020) J Mater Chem A 8:6034–6040

    Article  CAS  Google Scholar 

  38. Zhong M, Hisatomi T, Kuang YB, Zhao J, Liu M, Iwase A, Jia QX, Nishiyama H, Minegishi T, Nakabayashi M, Shibata N, Niishiro R, Katayama C, Shibano H, Katayama M, Kudo A, Yamada T, Domen K (2015) J Am Chem Soc 137:5053–5060

    Article  CAS  PubMed  Google Scholar 

  39. Xie ZR, Tan HL, Wen XM, Suzuki Y, Iwase A, Kudo A, Amal R, Scott J, Ng YH, Appl ACS (2019) Mater Interfaces 11:23125–23134

    Article  CAS  Google Scholar 

  40. Tan TL, Tahini HA, Wen XM, Wong RJ, Tan X, Iwase A, Kudo A, Amal R, Smith SC, Ng YH (2016) Small 12:5295–5302

    Article  CAS  PubMed  Google Scholar 

  41. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16655–16661

    Article  CAS  Google Scholar 

  42. Wang S, Wang Y, Zhang S, Zang S, Lou XW (2019) Adv Mater 31:1903404

    Article  CAS  Google Scholar 

  43. Ou M, Zhong Q, Zhang SL, Yu LM (2015) J Alloy Compd 626:401–409

    Article  CAS  Google Scholar 

  44. Maeda K, Domen K (2016) Bull Chem Soc Jpn 89:627–648

    Article  CAS  Google Scholar 

  45. Konta R, Ishii T, Kato H, Kudo A (2004) J Phys Chem B 108:8992–8995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Chinese National Programs for Research and Development (2016YFC0203800), the National Natural Science Foundation of China (51578288), Youth Project of the Natural Science Foundation of Jiangsu Province (BK20171008, BK20200713), Youth Project of the Natural Science Foundation of China (51902156), Natural Science Research in Colleges and Universities of Jiangsu Province (20KJB150027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Ou or Qin Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1586 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, M., Li, J., Geng, M. et al. Construction of Z-scheme Photocatalyst Containing ZnIn2S4, Co3O4-Photodeposited BiVO4 (110) Facets and rGO Electron Mediator for Overall Water Splitting into H2 and O2. Catal Lett 151, 2570–2582 (2021). https://doi.org/10.1007/s10562-021-03529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03529-4

Keywords

Navigation