Skip to main content
Log in

Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

MoS2 supported noble metal catalysts were used for the catalytic conversion of terahydrofurfuryl alcohol (THFA) to 1,5-pentanediol (1,5-PDO) and its derivate tetrahydropyrane (THP). Over the optimal 4%Pt/MoS2-FR catalyst, 75.8% overall selectivity (35.4% to 1,5-PDO and 40.4% to THP) and 63.7% conversion of 5 wt% THFA solution were obtained after 8 h reaction at 250 °C. The catalyst showed stable catalytic performance in five-cycle reactions, demonstrating the robustness of Pt/MoS2 under the harsh hydrothermal and hydrogenation conditions. A variety of characterizations, including CO-DRIFTS, HRTEM, H2-TPR, Raman spectroscopy and XPS revealed that typical behavior of strong metal-support interaction (SMSI) existed between Pt and MoS2, largely caused by the coverage of MoS2 over Pt and rarely reported previously. The Pt/MoS2 had intact structure under the harsh conditions thanks to the SMSI and chemical stability of MoS2. The acidity of Pt/MoS2 was negligible, and the active sites for the reaction were attributed to Pt and the Mo sites interacting closely on the catalysts. The reaction pathway was proposed according to the product distributions and the results of conditional experiments.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  PubMed  Google Scholar 

  2. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem Rev 115:11559–11624

    Article  CAS  PubMed  Google Scholar 

  3. Palkovits R (2010) Pentenoic acid pathways for cellulosic biofuels. Angew Chem Int Ed 49:4336–4338

    Article  CAS  Google Scholar 

  4. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  5. Melero JA, Iglesias J, Garcia A (2012) Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energ Environ Sci 5:7393–7420

    Article  CAS  Google Scholar 

  6. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  7. Tuck CO, Pérez E, Horváth IT, Sheldon RA (2012) Valorization of biomass deriving more value from waste. Science 337:695–699

    Article  CAS  PubMed  Google Scholar 

  8. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  CAS  Google Scholar 

  9. Schlaf M (2006) Selective deoxygenation of sugar polyols to alpha, omega-diols and other oxygen content reduced materials-a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton Trans. https://doi.org/10.1039/B608007C

    Article  PubMed  Google Scholar 

  10. Soghrati E, Choong C, Poh CK, Kawi S, Borgna A (2017) Single-Pot Conversion of Tetrahydrofurfuryl Alcohol into Tetrahydropyran over a Ni/HZSM-5 Catalyst under Aqueous-Phase Conditions. ChemCatChem 9:1402–1408

    Article  CAS  Google Scholar 

  11. Tran LS, De Bruycker R, Carstensen HH, Glaude PA, Monge F, Alzueta MU, Martin RC, Battin-Leclerc F, Van Geem KM, Marin GB (2015) Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combust Flame 162:4283–4303

    Article  CAS  Google Scholar 

  12. Tanaka H, Iwanaga Y, Wu GC, Sanui K, Ogata N (1982) Synthesis of Polyesters by Direct Polycondensation with Picryl Chloride. Polym J 8:643–648

    Article  Google Scholar 

  13. Chang CC, Chen KS, Yu TL, Chen YS, Tsai CL, Tseng YH (1999) Phase segregation of polyester based-polyurethanes. Polym J 31:1205–1210

    Article  CAS  Google Scholar 

  14. Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: Hemicellulose/xylosederived biochemical. Biofuel Bioprod Bior 2:438–454

    Article  CAS  Google Scholar 

  15. Xing R, Qi W, Huber GW (2011) Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energ Environ Sci 4:2193–2205

    Article  CAS  Google Scholar 

  16. Dutta S, De S, Saha B, Alam MI (2012) Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 2:2025–2036

    Article  CAS  Google Scholar 

  17. Nakagawa Y, Tamura M, Tomishige K (2015) Catalytic Conversions of Furfural to Pentanediols. Catal Surv Asia 19:249–256

    Article  CAS  Google Scholar 

  18. Li X, Jia P, Wang T (2016) Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catal 6:7621–7640

    Article  CAS  Google Scholar 

  19. Huang KF, Brentzel ZJ, Barnett KJ, Dumesic JA, Huber GW, Maravelias CT (2017) Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustain Chem Eng 5:4699–4706

    Article  CAS  Google Scholar 

  20. Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun. https://doi.org/10.1039/b822942b

    Article  Google Scholar 

  21. Schniepp LE, Geller HH (1946) Preparation of dihydropyran delta-hydroxyvaleraldehyde and 1,5-pentanediol from tetrahydrofurfuryl alcohol. J Am Chem Soc 68:1646–1648

    Article  CAS  PubMed  Google Scholar 

  22. Huang KF, Won WY, Barnett KJ, Brentzel ZJ, Alonso DM, Huber GW, Dumesic JA, Maravelias CT (2018) Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. Appl Energ 213:585–594

    Article  CAS  Google Scholar 

  23. Tamura M, Nakagawa Y, Tomishige K (2019) Recent Developments of Heterogeneous Catalysts for Selective Hydrogenation of Unsaturated Carbonyl Compounds to Unsaturated Alcohols. J Jpn Petrol Inst 62:106–119

    Article  CAS  Google Scholar 

  24. Huang RJ, Cui QQ, Yuan QQ, Wu HH, Guan YJ, Wu P (2018) Total Hydrogenation of Furfural over Pd/Al2O3 and Ru/ZrO2 Mixture under Mild Conditions: Essential Role of Tetrahydrofurfural as an Intermediate and Support Effect. ACS Sustain Chem Eng 6:6957–6964

    Article  CAS  Google Scholar 

  25. Amada Y, Watanabe H, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2012) Structure of ReOx Clusters Attached on the Ir Metal Surface in Ir-ReOx/SiO2 for the Hydrogenolysis Reaction. J Phys Chem C 116:23503–23514

    Article  CAS  Google Scholar 

  26. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143

    Article  CAS  Google Scholar 

  27. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst. Green Chem 16:617–626

    Article  Google Scholar 

  28. Chen K, Mori K, Watanabe H, Nakagawa Y, Tomishige K (2012) C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J Catal 294:171–183

    Article  CAS  Google Scholar 

  29. Tomishige K, Tamura M, Nakagawa Y (2014) Role of Re species and acid cocatalyst on Ir-ReOx /SiO2 in the C-O hydrogenolysis of biomass-derived substrates. Chem Rec 14:1041–1054

    Article  CAS  PubMed  Google Scholar 

  30. Rodiansono S, Khairi T, Hara N, Ichikuni S, Shimazu, (2012) Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catal Sci Technol 2:2139

    Article  CAS  Google Scholar 

  31. Pholjaroen B, Li N, Huang YQ, Li L, Wang AQ, Zhang T (2015) Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catal Today 245:93–99

    Article  CAS  Google Scholar 

  32. Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K (2009) Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89–92

    Article  CAS  Google Scholar 

  33. Bampoulis P, Teernstra VJ, Lohse D, Zandvliet HJW, Poelsema B (2016) Hydrophobic Ice Confined between Graphene and MoS2. J Phys Chem C 120:27079–27084

    Article  CAS  Google Scholar 

  34. Dufour A, Celzard A, Fierro V, Martin E, Broust F, Zoulalian A (2008) Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Appl Catal A 346:164–173

    Article  CAS  Google Scholar 

  35. Zapata PA, Faria J, Ruiz MP, Jentoft RE, Resasco DE (2012) Hydrophobic Zeolites for Biofuel Upgrading Reactions at the Liquid-Liquid Interface in Water/Oil Emulsions. J Am Chem Soc 134:8570–8578

    Article  CAS  PubMed  Google Scholar 

  36. Hu KH, Hu XG, Xu YF, Sun JD (2010) Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. J Mater Sci 45:2640–2648

    Article  CAS  Google Scholar 

  37. Liang D, Gao J, Wang JH, Chen P, Hou ZY, Zheng XM (2009) Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal Commun 10:1586–1590

    Article  CAS  Google Scholar 

  38. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  39. Lin J, Qiao B, Liu J, Huang Y, Wang A, Li L, Zhang W, Allard LF, Wang X, Zhang T (2012) Design of a highly active Ir/Fe(OH)x catalyst: versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew Chem Int Ed 51:2920–2924

    Article  CAS  Google Scholar 

  40. Antolini E (2010) Composite materials An emerging class of fuel cell catalyst supports. Appl Catal B 100:413–426

    Article  CAS  Google Scholar 

  41. Liu J (2016) Catalysis by Supported Single Metal Atoms. ACS Catal 7:34–59

    Article  CAS  Google Scholar 

  42. Dosso LA, Vera CR, Grau JM (2017) Aqueous phase reforming of polyols from glucose degradation by reaction over Pt/alumina catalysts modified by Ni or Co. Int J Hydrog Energy 42:18853–18864

    Article  CAS  Google Scholar 

  43. Pei WB, Dai LY, Liu YX, Deng JG, Jing L, Zhang KF, Hou ZQ, Han Z, Rastegarpanah A, Dai HX (2020) PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. J Catal 385:274–288

    Article  CAS  Google Scholar 

  44. Sun SH (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    Article  CAS  Google Scholar 

  45. Liu XY, Liu MH, Luo YC, Mou CY, Lin SD, Cheng HK, Chen JM, Lee JF, Lin TS (2012) Strong Metal-Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. J Am Chem Soc 134:10251–10258

    Article  CAS  PubMed  Google Scholar 

  46. Britvin SN, Kashtanov SA, Krivovichev SV, Chukanov NV (2016) Xenon in Rigid Oxide Frameworks: Structure, Bonding and Explosive Properties of Layered Perovskite K4Xe3O12. J Am Chem Soc 138:13838–13841

    Article  CAS  PubMed  Google Scholar 

  47. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions : Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  48. Han B, Guo YL, Huang YK, Xi W, Xu J, Luo J, Qi HF, Ren YJ, Liu XY, Qiao BT, Zhang T (2020) Strong Metal-Support Interactions between Pt Single Atoms and TiO2. Angew Chem Int Ed 59:11824–11829

    Article  CAS  Google Scholar 

  49. Yan QQ, Wu DX, Chu SQ, Chen ZQ, Lin Y, Chen MX, Zhang J, Wu XJ, Liang HW (2019) Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat Commun 10:4977–4985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tang HL, Su Y, Zhang BS, Lee AF, Isaacs MA, Wilson K, Li L, Ren YG, Huang JH, Haruta M, Qiao BT, Liu X, Jin CZ, Su DS, Wang JH, Zhang T (2017) Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci Adv 3:e1700231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tang H, Liu F, Wei J, Qiao B, Zhao K, Su Y, Jin C, Li L, Liu JJ, Wang J, Zhang T (2016) Ultrastable Hydroxyapatite/Titanium-Dioxide-Supported Gold Nanocatalyst with Strong Metal-Support Interaction for Carbon Monoxide Oxidation. Angew Chem Int Ed 55:10606–10611

    Article  CAS  Google Scholar 

  52. Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen HEM, Ulstrup J, Zhao F (2017) Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci Adv 3:e1700623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv Funct Mater 22:1385–1390

    Article  CAS  Google Scholar 

  54. Baker MA, Gilmore R, Lenardi C, Gissler W (1999) XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl Surf Sci 150:255–262

    Article  CAS  Google Scholar 

  55. Xiao B, Zheng MY, Li XS, Pang JF, Sun RY, Wang H, Pang XL, Wang AQ, Wang XD, Zhang T (2016) Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO2 + Ir-ReOx/SiO2 in a fixed-bed reactor. Green Chem 18:2175–2184

    Article  CAS  Google Scholar 

  56. Tamura M, Amada Y, Liu SB, Yuan ZL, Nakagawa Y, Tomishige K (2014) Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. J Mol Catal A 388:177–187

    Article  CAS  Google Scholar 

  57. Wang J, Zhao X, Lei N, Li L, Zhang L, Xu S, Miao S, Pan X, Wang A, Zhang T (2016) Hydrogenolysis of Glycerol to 1,3-propanediol under Low Hydrogen Pressure over WOx-Supported Single/Pseudo-Single Atom Pt Catalyst. Chemsuschem 9:784–790

    Article  CAS  PubMed  Google Scholar 

  58. Umbarkar SB, Biradar AV, Mathew SM, Shelke SB, Malshe KM, Patil PT, Dagde SP, Niphadkar SP, Dongare MK (2006) Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst. Green Chem 8:488–493

    Article  CAS  Google Scholar 

  59. Zhao X, Wang J, Yang M, Lei N, Li L, Hou B, Miao S, Pan X, Wang A, Zhang T (2017) Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. Chemsuschem 10:819–824

    Article  CAS  PubMed  Google Scholar 

  60. Doudin N, Yuk SF, Marcinkowski MD, Nguyen MT, Dohnalek Z (2019) Understanding Heterolytic H2 Cleavage and Water-Assisted Hydrogen Spillover on Fe3O4(001)-Supported Single Palladium Atoms. ACS Catal 9:7876–7887

    Article  CAS  Google Scholar 

  61. Nakagawa Y, Mori K, Chen K, Amada Y, Tamura M, Tomishige K (2013) Hydrogenolysis of C-O bond over Re-modified Ir catalyst in alkane solvent. Appl Catal A 468:418–425

    Article  CAS  Google Scholar 

  62. He JY, Burt SP, Ball MR, Hermans IAC, Dumesic JA, Huber GW (2019) Catalytic C-O bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Appl Catal B 258:117945–117954

    Article  CAS  Google Scholar 

  63. Du X, Huang Y, Pan X, Han B, Su Y, Jiang Q, Li M, Tang H, Li G, Qiao B (2020) Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat Commun 11:5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu SB, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) Performance and characterization of rhenium-modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catal Sci Technol 4:2535–2549

    Article  CAS  Google Scholar 

  65. Koso S, Nakagawa Y, Tomishige K (2011) Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J Catal 280:221–229

    Article  CAS  Google Scholar 

  66. Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. ACS Catal 3:2655–2668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21690081, 2172100028 and 21776268), “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant XDA 21060200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyuan Zheng.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 3470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pang, J., Luo, W. et al. Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catal Lett 151, 2734–2747 (2021). https://doi.org/10.1007/s10562-020-03500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03500-9

Keywords

Navigation