Skip to main content

Advertisement

Log in

Bone Disease in CKD in Children

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This manuscript discusses mineral and bone disorders of chronic kidney disease (MBD-CKD) in pediatric patients with special emphasis on the underlying pathophysiology, the causes and clinical profile of growth retardation, the alterations in the growth plate, the strategies to optimize growth and the medical recommendations for prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO (2017) Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Google Scholar 

  2. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373

    PubMed  Google Scholar 

  3. Becherucci F, Roperto RM, Materassi M, Romagnani P (2016) Chronic kidney disease in children. Clin Kidney J 9:583–591

    PubMed  PubMed Central  Google Scholar 

  4. Schmitt CP, Mehls O (2011) Mineral and bone disorders in children with chronic kidney disease. Nat Rev Nephrol 7:624–634

    CAS  PubMed  Google Scholar 

  5. Shroff R, Weaver DJ Jr, Mitsnefes MM (2011) Cardiovascular complications in children with chronic kidney disease. Nat Rev Nephrol 7:642–649

    CAS  PubMed  Google Scholar 

  6. Delanaye P, Souberbielle JC, Lafage-Proust MH, Jean G, Cavalier E (2014) Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 29:997–1004

    CAS  PubMed  Google Scholar 

  7. Vasikaran S, Eastell R, Bruyere O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    CAS  PubMed  Google Scholar 

  8. Hanudel MR, Salusky IB (2017) Treatment of pediatric chronic kidney disease-mineral and bone disorder. Curr Osteoporos Rep 15:198–206

    PubMed  PubMed Central  Google Scholar 

  9. Kates DM, Sherrard DJ, Andress DL (1997) Evidence that serum phosphate is independently associated with serum PTH in patients with chronic renal failure. Am J Kidney Dis 30:809–813

    CAS  PubMed  Google Scholar 

  10. Moe SM, Drueke T, Lameire N, Eknoyan G (2007) Chronic kidney disease-mineral-bone disorder: a new paradigm. Adv Chronic Kidney Dis 14:3–12

    PubMed  Google Scholar 

  11. Figurek A, Rroji M, Spasovski G (2020) Sclerostin: a new biomarker of CKD-MBD. Int Urol Nephrol 52:107–113

    PubMed  Google Scholar 

  12. Nagata Y, Inaba M, Imanishi Y et al (2015) Increased undercarboxylated osteocalcin/intact osteocalcin ratio in patients undergoing hemodialysis. Osteoporos Int 26:1053–1061

    CAS  PubMed  Google Scholar 

  13. Riminucci M, Collins MT, Fedarko NS et al (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    CAS  PubMed  Google Scholar 

  15. Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H (2005) Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 9:331–335

    CAS  PubMed  Google Scholar 

  16. Shimada T, Hasegawa H, Yamazaki Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    CAS  PubMed  Google Scholar 

  17. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabbagh Y, Graciolli FG, O’Brien S et al (2012) Repression of osteocyte Wnt/betacatenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27:1757–1772

    CAS  PubMed  Google Scholar 

  19. Pelletier S, Dubourg L, Carlier MC et al (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bacchetta J, Dubourg L, Harambat J et al (2010) The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J Clin Endocrinol Metab 95:1741–1748

    CAS  PubMed  Google Scholar 

  21. van Husen M, Fischer AK, Lehnhardt A et al (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 2010(78):200–206

    Google Scholar 

  22. Sinha MD, Turner C, Dalton RN et al (2012) Investigating FGF-23 concentrations and its relationship with declining renal function in paediatric patients with predialysis CKD stages 3-5. Nephrol Dial Transplant 27:4361–4368

    CAS  PubMed  Google Scholar 

  23. Portale AA, Wolf M, Jüppner H et al (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344–353

    CAS  PubMed  Google Scholar 

  24. Isakova T, Cai X, Lee J et al (2020) Longitudinal evolution of markers of mineral metabolism in patients with CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 75:235–244

    CAS  PubMed  Google Scholar 

  25. Wolf M (2012) Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 82:737–747

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Khouzam NM, Wesseling-Perry K, Salusky IB (2015) The role of bone in CKD-mediated mineral and vascular disease. Pediatr Nephrol 30:1379–1388

    PubMed  Google Scholar 

  27. Canalejo R, Canalejo A, Martinez-Moreno JM et al (2010) FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 21:1125–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 6:913–921

    CAS  PubMed  Google Scholar 

  29. Llach F (1995) Secondary hyperparathyroidism in renal failure: the trade-off hypothesis revisited. Am J Kidney Dis 25:663–679

    CAS  PubMed  Google Scholar 

  30. Hsu CH, Patel SR, Young EW, Vanholder R (1994) The biological action of calcitriol in renal failure. Kidney Int 46:605–612

    CAS  PubMed  Google Scholar 

  31. Goodman WG, Quarles LD (2007) Development and progression of secondary hyperparathyroidism in chronic kidney disease: Lessons from molecular genetics. Kidney Int 74:276–288

    PubMed  Google Scholar 

  32. Martin-Salvago M, Villar-Rodriguez JL, Palma-Alvarez A, Beato-Moreno A, Galera-Davidson H (2003) Decreased expression of calcium receptor in parathyroid tissue in patients with hyperparathyroidism secondary to chronic renal failure. Endocr Pathol 14:61–70

    CAS  PubMed  Google Scholar 

  33. Lewis R (2012) Mineral and bone disorders in chronic kidney disease: new insights into mechanism and management. Ann Clin Biochem 49(Pt 5):432–440

    CAS  PubMed  Google Scholar 

  34. Drube J, Wan M, Bonthuis M et al (2019) Clinical practice recommendations for growth hormone treatment in children with chronic kidney disease. Nat Rev Nephrol 15:577–589

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Haffner D, Schaefer F, Nissel R, Wuhl E, Tonshoff B, Mehls O (2000) Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. N Engl J Med 343:923–930

    CAS  PubMed  Google Scholar 

  36. Behnisch R, Kirchner M, Anarat A et al (2019) Determinants of statural growth in European children with chronic kidney disease: Findings from the cardiovascular comorbidity in children with chronic kidney disease (4C) study. Front Pediatr 7:278

    PubMed  PubMed Central  Google Scholar 

  37. Schaefer F, Borzych-Duzalka D, Azocar M et al (2012) Impact of global economic disparities on practices and outcomes of chronic peritoneal dialysis in children: Insights from the international pediatric peritoneal dialysis network registry. Perit Dial Int 32:399–409

    PubMed  PubMed Central  Google Scholar 

  38. Franke D, Alakan H, Pavicic L et al (2013) Birth parameters and parental height predict growth outcome in children with chronic kidney disease. Pediatr Nephrol 28:2335–2341

    PubMed  Google Scholar 

  39. Haffner D, Zivicnjak M (2017) Pubertal development in children with chronic kidney disease. Pediatr Nephrol 32:949–964

    PubMed  Google Scholar 

  40. Kim HS, Ng DK, Matheson MB et al (2020) Delayed menarche in girls with chronic kidney disease and the association with short stature. Pediatr Nephrol 35:1471–1475

    PubMed  Google Scholar 

  41. Franke D, Winkel S, Gellermann J et al (2013) Growth and maturation improvement in children on renal replacement therapy over the past 20 years. Pediatr Nephrol 28:2043–2051

    PubMed  Google Scholar 

  42. Tainio J, Qvist E, Vehmas R et al (2011) Pubertal development is normal in adolescents after renal transplantation in childhood. Transplantation 92:404–409

    PubMed  Google Scholar 

  43. Franke D, Thomas L, Steffens R et al (2015) Patterns of growth after kidney transplantation among children with ESRD. Clin J Am Soc Nephrol 10:127–134

    CAS  PubMed  Google Scholar 

  44. Ewert A, Leifheit-Nestler M, Hohenfellner K et al (2020) Bone and mineral metabolism in children with nephropathic cystinosis compared with other CKD entities. J Clin Endocrinol Metab 105:dgaa267

    PubMed  Google Scholar 

  45. Rees L, Shaw V, Qizalbash L et al (2020) Delivery of a nutritional prescription by enteral tube feeding in children with chronic kidney disease stages 2-5 and on dialysis-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol. https://doi.org/10.1007/s00467-020-04623-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Borzych D, Rees L, Ha IS et al (2010) The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int 78:1295–1304

    PubMed  Google Scholar 

  47. Daschner M, Philippin B, Nguyen T et al (2002) Circulating inhibitor of gonadotropin releasing hormone secretion by hypothalamic neurons in uremia. Kidney Int 62:1582–1590

    CAS  PubMed  Google Scholar 

  48. Wiezel D, Assadi MH, Landau D et al (2014) Impaired renal growth hormone JAK/STAT5 signaling in chronic kidney disease. Nephrol Dial Transplant 29:791–799

    CAS  PubMed  Google Scholar 

  49. Tonshoff B, Kiepe D, Ciarmatori S (2005) Growth hormone/insulin-like growth factor system in children with chronic renal failure. Pediatr Nephrol 20:279–289

    PubMed  Google Scholar 

  50. Olney RC (2009) Mechanisms of impaired growth: Effect of steroids on bone and cartilage. Horm Res 72(Suppl 1):30–35

    CAS  PubMed  Google Scholar 

  51. van der Eerden BCJ, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801

    PubMed  Google Scholar 

  52. Fernández-Iglesias A, López JM, Santos F (2020) Growth plate alterations in chronic kidney disease. Pediatr Nephrol 35:367–374

    PubMed  Google Scholar 

  53. Santos F, Carbajo-Pérez E, Rodríguez J et al (2005) Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 20:330–334

    PubMed  Google Scholar 

  54. Hunziker EB, Schenk RK (1989) Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol 414:55–71

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375–378

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ureña P, Ferreira A, Morieux C, Drüeke T, de Vernejoul MC (1996) PTH/PTHrP receptor mRNA is down-regulated in epiphyseal cartilage growth plate of uraemic rats. Nephrol Dial Transplant 11:2008–2016

    PubMed  Google Scholar 

  57. Troib A, Landau D, Kachko L, Rabkin R, Segev Y (2013) Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation. Kidney Int 84:940–949

    CAS  PubMed  Google Scholar 

  58. Claramunt D, Gil-Peña H, Fuente R et al (2015) Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia. Am J Physiol Renal Physiol 309:F57–F62

    CAS  PubMed  Google Scholar 

  59. Troib A, Guterman M, Rabkin R, Landau D, Segev Y (2016) Endurance exercise and growth hormone improve bone formation in young and growth-retarded chronic kidney disease rats. Nephrol Dial Transplant 31:1270–1279

    CAS  PubMed  Google Scholar 

  60. Fernández-Iglesias Á, Fuente R, Gil-Peña H et al (2020) Innovative three-dimensional microscopic analysis of uremic growth plate discloses alterations in the process of chondrocyte hypertrophy: effects of growth hormone treatment. Int J Mol Sci 21:4519

    PubMed Central  Google Scholar 

  61. Molinos I, Santos F, Carbajo-Perez E et al (2006) Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney Int 70:1955–1961

    CAS  PubMed  Google Scholar 

  62. Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF (2016) Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. Endocr Rev 37:62–110

    CAS  PubMed  Google Scholar 

  63. Haffner D (2020) Strategies for optimizing growth in children with chronic kidney disease. Front Pediatr 8:399

    PubMed  PubMed Central  Google Scholar 

  64. Lurbe E, Agabiti-Rosei E, Cruickshank JK et al (2016) European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens 34:1887–1920

    CAS  PubMed  Google Scholar 

  65. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A (2010) Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant 25:867–873

    CAS  PubMed  Google Scholar 

  66. Shroff R, Smith C, Ranchin B et al (2019) Effects of hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, heart and height study. J Am Soc Nephrol 30:678–691

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shaw V, Polderman N, Renken-Terhaerdt J et al (2020) Energy and protein requirements for children with CKD stages 2-5 and on dialysis-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol 35:519–531

    PubMed  Google Scholar 

  68. Haffner D, Leifheit-Nestler M (2020) Treatment of hyperphosphatemia: the dangers of aiming for normal PTH levels. Pediatr Nephrol 35:485–491

    PubMed  Google Scholar 

  69. Bacchetta J (2020) Treatment of hyperphosphatemia: the dangers of high PTH levels. Pediatr Nephrol 35:493–500

    PubMed  Google Scholar 

  70. Shroff R, Wan M, Nagler EV et al (2017) Clinical practice recommendations for treatment with active vitamin D analogues in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrol Dial Transplant 32:1114–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shroff R, Wan M, Nagler EV et al (2017) Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrol Dial Transplant 32:1098–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fine RN, Martz K, Stablein D (2010) What have 20 years of data from the North American Pediatric Renal Transplant Cooperative Study taught us about growth following renal transplantation in infants, children, and adolescents with end-stage renal disease? Pediatr Nephrol 25:739–746

    PubMed  Google Scholar 

  73. Klare B, Montoya CR, Fischer DC, Stangl MJ, Haffner D (2012) Normal adult height after steroid-withdrawal within 6 months of pediatric kidney transplantation: a 20 years single center experience. Transpl Int 25:276–282

    CAS  PubMed  Google Scholar 

  74. Delucchi A, Valenzuela M, Lillo AM et al (2011) Early steroid withdrawal in pediatric renal transplant: five years of follow-up. Pediatr Nephrol 26:2235–2244

    PubMed  Google Scholar 

  75. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 113:S1–S130

    Google Scholar 

  76. Klaus G, Watson A, Edefonti A et al (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21:151–159

    CAS  PubMed  Google Scholar 

  77. National Kidney Foundation, Foundation National Kidney (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42(Suppl 3):S1–S201

    Google Scholar 

  78. Kopple JD (2001) National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. 37. Am J Kidney Dis 37(Suppl 2):S66–S70

    CAS  PubMed  Google Scholar 

  79. Gutekunst L (2016) An update on phosphate binders: a dietitian’s perspective. J Ren Nutr 26:209–218

    CAS  PubMed  Google Scholar 

  80. Warady BA, Ng E, Bloss L, Mo M, Schaefer F, Bacchetta J (2020) Cinacalcet studies in pediatric subjects with secondary hyperparathyroidism receiving dialysis. Pediatr Nephrol 35:1679–1697

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F., Díaz-Anadón, L., Ordóñez, F.A. et al. Bone Disease in CKD in Children. Calcif Tissue Int 108, 423–438 (2021). https://doi.org/10.1007/s00223-020-00787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00787-z

Navigation