Skip to main content
Log in

Effect of Long-Term Light Deprivation on α-Tocopherol Content in Rats during Ontogeny

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of long-term light deprivation which began at different stages of ontogeny on the content of α-tocopherol in rats during the first 3 months of postnatal development. In the offspring postnatally exposed to constant darkness, the level of α-tocopherol in the liver, kidneys, heart, skeletal muscles, and lungs was significantly decreased at the early stages of postnatal ontogeny (2 weeks and 1 month). In rats kept under constant darkness after birth, the content of α-tocopherol in the lungs was also reduced at the age of 1 month. The modulating effect of light deprivation on the level of α-tocopherol can be associated both with the impact of disturbed circadian rhythms and with increased content of melatonin in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Men’shchikova EB, Lankin VZ, Zenkov NK, Bondar’ IA, Krygovykh NF, Trufakin VA. Oxidative Stress. Prooxidants and Antioxidants. Moscow, 2006. Russian.

  2. Khizhkin EA, Yunash VD, Ilyukha VA, Vinogradova IA, Morozov AV, Timeyko NG. Reproduction and puberty in rats exposed to constant darkness. Trudy Karel. Nauch. Tsentra. Ross. Akad. Nauk. 2014;(5):200-206. Russian.

    Google Scholar 

  3. Anmann T, Varikmaa M, Timohhina N, Tepp K, Shevchuk I, Chekulayev V, Saks V, Kaambre T. Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim. Biophys. Acta. 2014;1837(8):1350-1361. doi: https://doi.org/10.1016/j.bbabio.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  4. Bishnupuri KS, Haldar C. Impact of Photoperiodic Exposures During Late Gestation and Lactation Periods on the Pineal and Reproductive Physiology of the Indian Palm Squirrel, Funambulus Pennanti. J. Reprod. Fertil. 2000;118(2):295-301. doi: https://doi.org/10.1530/jrf.0.1180295

    Article  CAS  PubMed  Google Scholar 

  5. Brooks E, Canal MM. Development of circadian rhythms: role of postnatal light environment. Neurosci. Biobehav. Rev. 2013;37(4):551-560. doi: https://doi.org/10.1016/j.neubiorev.2013.02.012

    Article  PubMed  Google Scholar 

  6. Debier C, Larondelle Y. Vitamins A and E: Metabolism, Roles and Transfer to Offspring. Br. J. Nutr. 2005;93(2):153-174. doi: https://doi.org/10.1079/bjn20041308

    Article  CAS  PubMed  Google Scholar 

  7. Farhadi N, Gharghani M, Farhadi Z. Effects of Long-Term Light, Darkness and Oral Administration of Melatonin on Serum Levels of Melatonin. Biomed. J. 2016;39(1):81-84. doi: https://doi.org/10.1016/j.bj.2015.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gooley JJ. Circadian regulation of lipid metabolism. Proc. Nutr. Soc. 2016;75(4):440-450. doi: https://doi.org/10.1017/S0029665116000288

    Article  CAS  PubMed  Google Scholar 

  9. Hanai M, Esashi T. The Interactive Effect of Dietary Fat-Soluble Vitamin Levels on the Depression of Gonadal Development in Growing Male Rats Kept Under Disturbed Daily Rhythm. Investigations Based on the L16(215) Type Orthogonal Array. J. Nutr. Sci. Vitaminol. (Tokyo). 2011;57(5):333-339. doi: https://doi.org/10.3177/jnsv.57.333

    Article  CAS  PubMed  Google Scholar 

  10. Karolczak K, Watala C. The Mystery Behind the Pineal Gland: Melatonin Affects the Metabolism of Cholesterol. Oxid. Med. Cell. Longev. 2019;2019:4531865. doi: https://doi.org/10.1155/2019/4531865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pévet P. Melatonin in Animal Models. Dialogues Clin. Neurosci. 2003;5(4):343-352.

    Article  Google Scholar 

  12. Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N. Engl. J. Med. 2000;343(15):1070-1077. doi: https://doi.org/10.1056/NEJM200010123431503

    Article  CAS  PubMed  Google Scholar 

  13. Sergina S, Ilyukha V, Uzenbaeva L, Khizhkin E, Antonova E. Morphologic changes in the pineal gland of rats exposed to continuous darkness. Biol. Rhythm Res. 2016;47(5):691-701. doi: https://doi.org/10.1080/09291016.2016.1183842

    Article  Google Scholar 

  14. Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C. Disruption of Circadian Rhythms Due to Chronic Constant Light Leads to Depressive and Anxiety-Like Behaviors in the Rat. Behav. Brain Res. 2013;252:1-9. doi: https://doi.org/10.1016/j.bbr.2013.05.028

    Article  PubMed  Google Scholar 

  15. Tschanz SA, Salm LA, Roth-Kleiner M, Barré SF, Burri PH, Schittny JC. Rat Lungs Show a Biphasic Formation of New Alveoli During Postnatal Development. J. Appl. Physiol. (1985). 2014;117(1):89-95. doi: https://doi.org/10.1152/japplphysiol.01355.2013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Baishnikova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 9, pp. 281-295, September, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baishnikova, I.V., Ilyina, T.N., Khizhkin, E.A. et al. Effect of Long-Term Light Deprivation on α-Tocopherol Content in Rats during Ontogeny. Bull Exp Biol Med 170, 294–298 (2021). https://doi.org/10.1007/s10517-021-05054-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05054-1

Key Words

Navigation