Skip to main content

Advertisement

Log in

Investigating the Sensitivity of Marine Fog to Physical and Microphysical Processes Using Large-Eddy Simulation

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Over the past few years large-eddy simulation (LES) has demonstrated success in modelling continental radiation fog, and several recent studies have used LES to investigate the sensitivity of fog formation to physical processes such as turbulent mixing and surface heat and moisture exchange, as well as to the parametrization of microphysical processes such as cloud droplet activation. Here we extend these sensitivity studies to marine fog. There are several important differences in the formation of marine and continental fog, however moisture availability is no longer a decisive factor, and surface temperature changes over a much longer time scale. Here LES is used to examine the sensitivity of simulated marine-fog formation and maintenance to the cloud-droplet number concentration, turbulent mixing, and air–sea temperature difference. The strength of the fog (in terms of liquid water content) is found to be highly sensitive to all three factors. Varying only the cloud-droplet number concentration, even within a range of physically realistic values for marine regions, can mean the difference between fog halving or doubling in liquid water content. The sensitivities demonstrated herein indicate the great need and challenge for constraining these parameters in numerical weather prediction. Similarities and differences to the findings for continental radiation fog are examined, and important considerations for future improvements in marine-fog forecasting are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul-Razzak H, Ghan J (2000) A parameterization of aerosol activation 2. Multiple aerosol types. J Geophys Res 105:6837–6844

    Google Scholar 

  • Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118(2):247–272. https://doi.org/10.1007/s10546-004-2820-6

    Article  Google Scholar 

  • Bendix J (2002) A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmos Res 64(1–4):3–18. https://doi.org/10.1016/S0169-8095(02)00075-3

    Article  Google Scholar 

  • Bergot T (2013) Small-scale structure of radiation fog: a large-eddy simulation study. Q J R Meteorol Soc 139(673):1099–1112. https://doi.org/10.1002/qj.2051

    Article  Google Scholar 

  • Bergot T (2016) Large-eddy simulation study of the dissipation of radiation fog. Q J R Meteorol Soc 142(695):1029–1040

    Article  Google Scholar 

  • Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests. Mon Weather Rev 122(6):1218–1230

    Article  Google Scholar 

  • Boutle I, Price J, Kudzotsa I, Kokkola H, Romakkaniemi S (2018) Aerosol-fog interaction and the transition to well-mixed radiation fog. Atmos Chem Phys 18(11):7827–7840

    Article  Google Scholar 

  • Brown R, Roach WT (1976) The physics of radiation fog: II a numerical study. Q J R Meteorol Soc 102(432):335–354

    Google Scholar 

  • Bryan GH, Morrison H (2011) Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon Weather Rev 140(1):202–225. https://doi.org/10.1175/mwr-d-11-00046.1

    Article  Google Scholar 

  • Chen J, Han B, Yang Q, Wei L, Zeng Y, Wu R, Zhang L, Ding Z (2019) Analysis of a sea fog episode at King George Island, Antarctica. Atmosphere 10(10):585

    Article  Google Scholar 

  • Cho YK, Kim MO, Kim BC (2002) Sea fog around the Korean Peninsula. J Appl Meteorol 39(12):2473–2479

    Article  Google Scholar 

  • de Lozar A, Mellado JP (2015) Mixing driven by radiative and evaporative cooling at the stratocumulus top. J Atmos Sci 72:4681–4700. https://doi.org/10.1175/JAS-D-15-0087.1

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495–527

    Article  Google Scholar 

  • Donelan MA, Haus BK, Reul N, Plant WJ, Stiassnie M, Graber HC, Brown OB, Saltzman ES (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31(18)

  • Dorman C, Mejia J, Koracin D, McEvoy D (2017) Worldwide marine fog occurrence and climatology. In: Koračin D, Dorman C (eds) Marine Fog: challenges and advancements in observations, modeling, and forecasting. Springer, Cham, pp 7–152

    Chapter  Google Scholar 

  • Dorman CE, Koračin D (2017) Marine fog: challenges and advancements in observations, modeling and forecasting. Springer, Cham, p 537

    Google Scholar 

  • Drennan WM, Zhang JA, French JR, McCormick C, Black PG (2007) Turbulent fluxes in the hurricane boundary layer. Part II: latent heat flux. J Atmos Sci 64(4):1103–1115

    Article  Google Scholar 

  • Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Weather Rev 119:324–341

    Article  Google Scholar 

  • Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90(3):447–477. https://doi.org/10.1023/A:1026441904734

    Article  Google Scholar 

  • Edson J, Crawford T, Crescenti J, Farrar T, Frew N, Gerbi G, Helmis C, Hristov T, Khelif D, Jessup A, Jonsson H, Li M, Mahrt L, McGillis W, Plueddemann A, Shen L, Skyllingstad E, Stanton T, Sullivan P, Sun J, Trowbridge J, Vickers D, Wang S, Wang Q, Weller R, Wilkin J, Williams AJ, Yue DK, Zappa C (2007) The coupled boundary layers and air-sea transfer experiment in low winds. Bull Am Meteorol Soc 3:341–356. https://doi.org/10.1175/BAMS-88-3-341

    Article  Google Scholar 

  • Edwards JM (2009) Radiative processes in the stable boundary layer: Part I. Radiative aspects. Boundary-Layer Meteorol 131(2):105–126. https://doi.org/10.1007/s10546-009-9364-8

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16(4):571–591

    Article  Google Scholar 

  • Fallmann J, Lewis H, Sanchez JC, Lock A (2019) Impact of high-resolution ocean-atmosphere coupling on fog formation over the North Sea. Q J R Meteorol Soc 145(720):1180–1201. https://doi.org/10.1002/qj.3488

    Article  Google Scholar 

  • Fernando HJS, Gultepe I, Dorman C, Pardyjak E, Wang Q, Hoch SW, Richter D, Creegan E, Gaberšek S, Bullock T, Hocut C, Chang R, Alappattu D, Dimitrova R, Flagg D, Grachev A, Krishnamurthy R, Singh DK, Lozovatsky I, Nagare B, Sharma A, Wagh S, Wainwright C, Wroblewski M, Yamaguchi R, Bardoel S, Coppersmith RS, Chisholm N, Gonzalez E, Gunawardena N, Hyde O, Morrison T, Olson A, Perelet A, Perrie W, Wang S, Wauer B (2020) C-FOG: life of coastal fog. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-19-0070.1 (in press)

    Article  Google Scholar 

  • Filonczuk MK, Cayan DR, Riddle LG (1995) Variability of marine fog along the California Coast. Tech Rep, Climate Research Division, Scripps Institution of Oceanography, San Diego, California, USA, p 93

  • Grachev AA, Krishnamurthy R, Fernando HJS, Fairall CW, Bardoel SL, Wang S (2020) Atmospheric turbulence measurements in coastal zone with and without fog. Submitted to Boundary-Layer Meteorol

  • Guedalia D, Bergot T (1994) Numerical forecasting of radiation fog. Part II: a comparison of model simulation with several observed fog events. Mon Weather Rev 6(122):1231–1246

    Article  Google Scholar 

  • Gultepe I, Müller MD, Boybeyi Z (2006) A new visibility parameterization for warm-fog applications in numerical weather prediction models. J Appl Meteorol Climatol 45(11):1469–1480. https://doi.org/10.1175/JAM2423.1

    Article  Google Scholar 

  • Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Müller MD, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164(6–7):1121–1159. https://doi.org/10.1007/s00024-007-0211-x

    Article  Google Scholar 

  • Gultepe I, Pearson G, Milbrandt JA, Hansen B, Platnick S, Taylor P, Gordon M, Oakley JP, Cober SG (2009) The fog remote sensing and modeling field project. Bull Am Meteorol Soc 90(6–7):341–360

    Article  Google Scholar 

  • Gultepe I, Milbrandt J, Zhao B (2017) Marine Fog: a review on microphysics and visibility prediction. In: Koračin D, Dorman C (eds) Marine Fog: challenges and advancements in observations, modeling, and forecasting. Springer, Cham, pp 345–394

    Chapter  Google Scholar 

  • Gultepe I, Fernando HJS, Pardyjak E, Dorman CE, J HA, Wang Q, Creegan E, Hoch SW, Flagg DD, Yamaguchi R, Krishnamurthy R, Gaberšek S, Perrie W, Perelet A, Singh DK, Chang R, Nagare B, Wagh S, Wang S (2020) A review of coastal fog microphysics during C-FOG. Submitted to Boundary-Layer Meteorol

  • Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont E, Dupont JC, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut JC, Rémy S, Richard D, Sciare J, Zhang X (2010) PARISFOG: shedding new light on fog physical processes. Bull Am Meteorol Soc 91(6):767–783. https://doi.org/10.1175/2009BAMS2671.1

    Article  Google Scholar 

  • Hammer E, Gysel M, Roberts GC, Elias T, Hofer J, Hoyle CR, Bukowiecki N, Dupont JC, Burnet F, Baltensperger U, Weingartner E (2014) Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. Atmos Chem Phys 14(19):10,517–10,533. https://doi.org/10.5194/acp-14-10517-2014

    Article  Google Scholar 

  • Heo KY, Ha KJ (2010) A coupled model study on the formation and dissipation of sea fogs. Mon Weather Rev 138(4):1186–1205. https://doi.org/10.1175/2009mwr3100.1

    Article  Google Scholar 

  • Heo KY, Ha KJ, Mahrt L, Shim JS (2010) Comparison of advection and steam fogs: from direct observation over the sea. Atmos Res 98:426–437. https://doi.org/10.1016/j.atmosres.2010.08.004

    Article  Google Scholar 

  • Hudson JG (1980) Relationship between fog condensation nuclei and fog microstructure. J Atmos Sci 37(8):1854–1867. https://doi.org/10.1175/1520-0469(1980)037<1854:rbfcna>2.0.co;2

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113(13):2–9. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  • Isaac G, Bullock T, Beale J, Beale S (2020) Characterizing and predicting marine fog offshore Newfoundland and Labrador. X-X, Weather Forecast X(X). https://doi.org/10.1175/WAF-D-19-0085.1

  • Kim CK, Yum SS (2010) Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv Atmos Sci 27(4):761–776. https://doi.org/10.1007/s00376-009-9090-7

    Article  Google Scholar 

  • Kim CK, Yum SS (2012a) A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting model. Boundary-Layer Meteorol 143(3):481–505. https://doi.org/10.1007/s10546-012-9706-9

    Article  Google Scholar 

  • Kim CK, Yum SS (2012b) Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure Appl Geophys 169(5–6):1121–1135. https://doi.org/10.1007/s00024-011-0325-z

    Article  Google Scholar 

  • Koračin D, Dorman CE, Lewis JM, Hudson JG, Wilcox EM, Torregrosa A (2014) Marine fog: a review. Atmos Res 143:142–175. https://doi.org/10.1016/j.atmosres.2013.12.012

    Article  Google Scholar 

  • Li Y, Zheng Y (2015) Analysis of atmospheric turbulence in the upper layers of sea fog. Chin J Oceanol Limnol 33(3):809–818. https://doi.org/10.1007/s00343-015-4030-0

    Article  Google Scholar 

  • Maalick Z, Kühn T, Korhonen H, Kokkola H, Laaksonen A, Romakkaniemi S (2016) Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle. Atmos Environ 133:26–33

    Article  Google Scholar 

  • Maronga B, Bosveld F (2017) Key parameters for the life cycle of nocturnal radiation fog: a comprehensive large-eddy simulation study. Q J R Meteorol Soc 143(707):2463–2480

    Article  Google Scholar 

  • Mazoyer M, Lac C, Thouron O, Bergot T, Masson V, Musson-Genon L (2017) Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle. Atmos Chem Phys 17(13):017

    Google Scholar 

  • Morrison H, Curry JA, Khvorostyanov VI (2005) A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J Atmos Sci 62(6):1665–1677. https://doi.org/10.1175/JAS3446.1

    Article  Google Scholar 

  • Nakanishi M (2000) Large-eddy simulation of radiation fog. Boundary-Layer Meteorol 94(3):461–493. https://doi.org/10.1023/A:1002490423389

    Article  Google Scholar 

  • Pilié RJ, Mack EJ, Rogers CW, Katz U, Kocmond WC (1979) The formation of marine fog and the development of fog-stratus systems along the California coast. J Appl Meteorol 18:1275–1286

    Article  Google Scholar 

  • Poku C, Ross AN, Blyth AM, Hill AA, Price JD (2019) How important are aerosol-fog interactions for the successful modelling of nocturnal radiation fog? Weather 74(7):237–243. https://doi.org/10.1002/wea.3503

    Article  Google Scholar 

  • Porson A, Price J, Lock A, Clark P (2011) Radiation fog. Part II: large-eddy simulations in very stable conditions. Boundary-Layer Meteorol 139(2):193–224. https://doi.org/10.1007/s10546-010-9579-8

    Article  Google Scholar 

  • Price J (2019) On the formation and development of radiation fog: an observational study. Boundary-Layer Meteorol 172:167–197

    Article  Google Scholar 

  • Price J, Lane S, Boutle I, Smith DKE, Bergot T, Lac C, Duconge L, McGregor J, Kerr-Munslow A, Pickering M, Clark R (2018) LANFEX: a field and modeling study to improve our understanding and forecasting of radiation fog. Bull Am Meteorol Soc 99(10):2061–2077

    Article  Google Scholar 

  • Schwenkel J, Maronga B (2019) Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: impact of different aerosol activation and condensation parameterizations. Atmos Chem Phys 19(10):7165–7181. https://doi.org/10.5194/acp-19-7165-2019

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Stolaki S, Haeffelin M, Lac C, Dupont JC, Elias T, Masson V (2015) Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study. Atmos Res 151:146–161

    Article  Google Scholar 

  • Tardif R (2007) The impact of vertical resolution in the explicit numerical forecasting of radiation fog: a case study. Pure Appl Geophys 164(6–7):1221–1240. https://doi.org/10.1007/s00024-007-0216-5

    Article  Google Scholar 

  • Thouron O, Brenguier JL, Burnet F (2012) Supersaturation calculation in large eddy simulation models for prediction of the droplet number concentration. Geosci Model Dev 5(3):761–772. https://doi.org/10.5194/gmd-5-761-2012

    Article  Google Scholar 

  • Twomey S (1959) The nuclei of natural cloud formation part II: the supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl Geophys 43:243–249

    Article  Google Scholar 

  • van der Velde IR, Steeneveld GJ, Wichers Schreur BGJ, Holtslag AAM (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev 138(11):4237–4253. https://doi.org/10.1175/2010mwr3427.1

    Article  Google Scholar 

  • Wærsted EG, Haeffelin M, Steeneveld GJ, Dupont JC (2019) Understanding the dissipation of continental fog by analysing the LWP budget using idealized LES and in situ observations. Q J R Meteorol Soc 145:784–804. https://doi.org/10.1002/qj.3465

    Article  Google Scholar 

  • Wagh S, Krishnamurthy R, Wainwright C, Wang S, Dorman C, Fernando HJS, Gultepe I (2020) Microphysics of marine fog during stratus cloud base lowering. Submitted to Boundary-Layer Meteorol

  • Wang S, Fernando HJS, Creegan E, Krishnamurthy R, Wainwright C, Wagh S (2020) Analysis of a coastal marine fog episode during C-FOG. Submitted to Boundary-Layer Meteorol

Download references

Acknowledgements

This research was funded by the Office of Naval Research Award N00014-18-1-2472 entitled Toward Improving Coastal Fog Prediction (C-FOG). Computer resources were made available through the Notre Dame Center for Research Computing and the DoD High Performance Computing Modernization Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Wainwright.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wainwright, C., Richter, D. Investigating the Sensitivity of Marine Fog to Physical and Microphysical Processes Using Large-Eddy Simulation. Boundary-Layer Meteorol 181, 473–498 (2021). https://doi.org/10.1007/s10546-020-00599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00599-6

Keywords

Navigation