Skip to main content
Log in

Comparison of strongly and weakly basic anionic resins as adsorbent for acrylic acid removal

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the current study, the removal of acrylic acid from the aqueous medium was examined by an adsorption technique using different basic anionic adsorbents, including Amberlite resins (IRA-67 and IRA-400). Amberlite IRA-67 and Amberlite IRA-400 were used as weakly and strongly base anionic resins, respectively. Kinetic, isotherm, and thermodynamic studies were exerted to detect the adsorption properties of these Amberlite IRA resins for the acrylic acid removal. In this context, the impacts of contact time (30–210 min), initial acrylic acid concentration (2%–10% (w/w)), temperature (25 °C-55 °C), and resin quantity (0.05–0.25 g) on the adsorption capacity (qe) were evaluated by experimentally. At these different adsorption conditions, the adsorption capacities of Amberlite IRA resins were determined and compared. The optimal adsorption conditions were determined as the contact time of 180 min, initial acrylic acid concentration of 10% (w/w), the temperature of 25 °C, and the resin quantity of 0.05 g. Comparison of Amberlite IRA resins in acrylic acid adsorption indicated that Amberlite IRA-67 with maximum qe = 232.44 mg.g−1 was an effective resin than Amberlite IRA-400 with maximum qe = 120.21 mg.g−1 at the optimal adsorption conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karimi-Maleh H, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F (2020) Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq 314:113588

    Article  Google Scholar 

  2. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 554:603–610

    Article  Google Scholar 

  3. Ensafi AA, Karimi-Maleh H (2010) Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int J Electrochem Sci 5(3):392–406

    Google Scholar 

  4. De B, Wasewar K, Dhongde V, Sontakke P (2018) Recovery of acrylic acid using calcium peroxide nanoparticles: thermodynamics and continuous column study. Chem Biochem Eng Q 32(1):19–28

    Article  Google Scholar 

  5. Aşçı YS, İncİ İ (2010) Extraction equilibria of acrylic acid from aqueous solutions by Amberlite LA-2 in various diluents. J Chem Eng Data 55(7):2385–2389

    Article  Google Scholar 

  6. Xiaobo X, Jianping L, Peilin C (2006) Advances in the research and development of acrylic acid production from biomass. Chin J Chem Eng 14(4):419–427

    Article  Google Scholar 

  7. Danner H, Ürmös M, Gartner M, Braun R (1998) Biotechnological production of acrylic acid from biomass. Appl Biochem Biotechnol 70(1):887–894

    Article  Google Scholar 

  8. Straathof AJ, Sie S, Franco TT, Van der Wielen LA (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67(6):727–734

    Article  Google Scholar 

  9. Lunelli BH, Duarte ER, De Toledo EV, Maciel MW, Maciel Filho R (2007) A new process for acrylic acid synthesis by fermentative process. In: Applied Biochemistry and Biotecnology. Springer, pp. 487–499

  10. Abdelrahman EA, Hegazey R, Kotp YH, Alharbi A (2019) Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochim Acta A Mol Biomol Spectrosc 222:117195

    Article  Google Scholar 

  11. Muthusaravanan S, Sivarajasekar N, Vivek J, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    Article  Google Scholar 

  12. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq 298:112040

    Article  Google Scholar 

  13. Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movagharnezhad S, Rajendran S (2020) An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq 310:113185

    Article  Google Scholar 

  14. Gülen J, Aslan S (2020) Adsorption of 2, 4-dichlorophenoxyacetic acid from aqueous solution using carbonized chest nut as low cost adsorbent: kinetic and thermodynamic. Z Phys Chem 234(3):461–484

    Article  Google Scholar 

  15. Zhang H (2015) Liquid–liquid phase equilibria of the quaternary system {water (1)+ acrylic acid (2)+ acetic acid (3)+ cyclopentyl methyl ether (4)}: measurement, correlation, and comparative study. Fluid Phase Equilib 403:23–29

    Article  Google Scholar 

  16. Keshav A, Wasewar KL, Chand S (2009) Extraction of acrylic, propionic, and butyric acid using Aliquat 336 in oleyl alcohol: equilibria and effect of temperature. Ind Eng Chem Res 48(2):888–893

    Article  Google Scholar 

  17. Baylan N (2020) Imidazolium-based ionic liquids for acrylic acid separation from water by bulk liquid membrane and extraction methods: a comparison study. J Chem Eng Data 65(6):3121–3129

    Article  Google Scholar 

  18. Mao Y, Fung B (1997) A study of the adsorption of acrylic acid and maleic acid from aqueous solutions onto alumina. J Colloid Interface Sci 191(1):216–221

    Article  Google Scholar 

  19. Bournel F, Laffon C, Parent P, Tourillon G (1996) Adsorption of acrylic acid on aluminium at 300 K: a multi-spectroscopic study. Surf Sci 352:228–231

    Article  Google Scholar 

  20. Baylan N, Meriçboyu AE (2016) Adsorption of lead and copper on bentonite and grapeseed activated carbon in single-and binary-ion systems. Sep Sci Technol 51(14):2360–2368

    Article  Google Scholar 

  21. Karimi-Maleh H, Orooji Y, Ayati A, Qanbari S, Tanhaei B, Karimi F, Alizadeh M, Rouhi J, Fu L, Sillanpää M (2020) Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: a comprehensive review. Journal of molecular liquids:115062. doi:https://doi.org/10.1016/j.molliq.2020.115062

  22. Baylan N, İlalan İ, İnci İ (2020) Copper oxide nanoparticles as a novel adsorbent for separation of acrylic acid from aqueous solution: synthesis, characterization, and application. Water Air Soil Pollut 231(9):1–15

    Article  Google Scholar 

  23. Domínguez-Vargas JR, Gonzalez T, Palo P, Cuerda-Correa EM (2013) Removal of carbamazepine, naproxen, and trimethoprim from water by Amberlite XAD-7: a kinetic study. CLEAN–Soil, Air, Water 41(11):1052–1061

    Article  Google Scholar 

  24. Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53 (8):2158–2166

  25. Naushad M, Vasudevan S, Sharma G, Kumar A, Alothman Z (2016) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded Amberlite IRA-400 resin. Desalin Water Treat 57(39):18551–18559

    Article  Google Scholar 

  26. Pradhan N, Rene E, Lens P, Dipasquale L, D’Ippolito G, Fontana A, Panico A, Esposito G (2017) Adsorption behaviour of lactic acid on granular activated carbon and anionic resins: thermodynamics, isotherms and kinetic studies. Energies 10(5):665

    Article  Google Scholar 

  27. Tan LC, Calix EM, Rene ER, Nancharaiah YV, van Hullebusch ED, Lens PN (2018) Amberlite IRA-900 ion exchange resin for the sorption of selenate and sulfate: equilibrium, kinetic, and regeneration studies. J Environ Eng 144(11):04018110

    Article  Google Scholar 

  28. Sumerskii I, Korntner P, Zinovyev G, Rosenau T, Potthast A (2015) Fast track for quantitative isolation of lignosulfonates from spent sulfite liquors. RSC Adv 5(112):92732–92742

    Article  Google Scholar 

  29. Greluk M, Hubicki Z (2011) Comparison of the gel anion exchangers for removal of acid orange 7 from aqueous solution. Chem Eng J 170(1):184–193

    Article  Google Scholar 

  30. Wawrzkiewicz M, Hubicki Z (2015) Anion exchange resins as effective sorbents for removal of acid, reactive, and direct dyes from textile wastewaters. In: Ion Exchange-Studies and Applications. Intech, pp. 37–72

  31. Víctor-Ortega M, Ochando-Pulido J, Martínez-Férez A (2016) Phenols removal from industrial effluents through novel polymeric resins: kinetics and equilibrium studies. Sep Purif Technol 160:136–144

    Article  Google Scholar 

  32. Víctor-Ortega MD, Pulido JO, Martínez-Férez A (2016) Equilibrium studies on phenol removal from industrial wastewater through polymeric resins. Chem Eng Trans 47:253–258

    Google Scholar 

  33. Uslu H, İnci İ, Bayazit ŞS (2010) Adsorption equilibrium data for acetic acid and glycolic acid onto Amberlite IRA-67. J Chem Eng Data 55(3):1295–1299

    Article  Google Scholar 

  34. Gluszcz P, Jamroz T, Sencio B, Ledakowicz S (2004) Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins. Bioprocess Biosyst Eng 26(3):185–190

    Article  Google Scholar 

  35. Yousuf A, Bonk F, Bastidas-Oyanedel J-R, Schmidt JE (2016) Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour Technol 217:137–140

    Article  Google Scholar 

  36. Uslu H, İnci İ, Bayazit ŞS, Demir GK (2009) Comparison of solid-liquid equilibrium data for the adsorption of propionic acid and tartaric acid from aqueous solution onto Amberlite IRA-67. Ind Eng Chem Res 48(16):7767–7772

    Article  Google Scholar 

  37. Uslu H, Demir G (2010) Adsorption of picric acid from aqueous solution by the weakly basic adsorbent Amberlite IRA-67. J Chem Eng Data 55(9):3290–3296

    Article  Google Scholar 

  38. Fu YQ, Chen Y, Li S, Huang H (2009) Fixed-bed adsorption study for fumaric acid removal from aqueous solutions by Amberlite IRA-400 resin. Chem Eng Technol 32(10):1625–1629

    Article  Google Scholar 

  39. Halilibrahimoğlu N, İnci İ, Baylan N (2019) Lactic acid recovery from water by Amberlite IRA-400. Desalin Water Treat 172:190–198

    Article  Google Scholar 

  40. Naushad M (2014) Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108

    Article  Google Scholar 

  41. Chiban M, Soudani A, Sinan F, Persin M (2011) Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf B: Biointerfaces 82(2):267–276

    Article  Google Scholar 

  42. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf A Physicochem Eng Asp 264(1–3):17–28

    Article  Google Scholar 

  43. Bayazit ŞS, İnci İ, Uslu H (2011) Adsorption of lactic acid from model fermentation broth onto activated carbon and Amberlite IRA-67. J Chem Eng Data 56(5):1751–1754

    Article  Google Scholar 

  44. McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340

    Article  MathSciNet  Google Scholar 

  45. Nayak AK, Pal A (2019) Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. J Mol Liq 276:67–77

    Article  Google Scholar 

  46. Freitas A, Mendes M, Coelho G (2007) Thermodynamic study of fatty acids adsorption on different adsorbents. J Chem Thermodyn 39(7):1027–1037

    Article  Google Scholar 

  47. Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM (2019) Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq 293:111442

    Article  Google Scholar 

  48. Moldes A, Alonso J, Parajo J (2003) Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst Eng 25(6):357–363

    Article  Google Scholar 

  49. Yalçın Ö, Baylan N, Çehreli S (2020) Adsorption of levodopa onto Amberlite resins: equilibrium studies and D-optimal modeling based on response surface methodology. Biomass Conversion and Biorefinery:1–14. doi:https://doi.org/10.1080/03067319.2020.1849665

  50. De B, Wasewar K, Dhongde V, Madan S, Gomase A (2018) Recovery of acrylic acid using calcium peroxide nanoparticles: synthesis, characterisation, batch study, equilibrium, and kinetics. Chem Biochem Eng Q 32(1):29–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Baylan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlalan, İ., İnci, İ. & Baylan, N. Comparison of strongly and weakly basic anionic resins as adsorbent for acrylic acid removal. Biomass Conv. Bioref. 12, 4147–4157 (2022). https://doi.org/10.1007/s13399-021-01302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01302-6

Keywords

Navigation