Skip to main content
Log in

Evaluation of Steam Explosion Pretreatment and Enzymatic Hydrolysis Conditions for Agave Bagasse in Biomethane Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The production of biofuels from lignocellulosic biomass includes a pretreatment step to alter the biomass structure and facilitate the enzymatic degradation of the polymers to obtain assimilable compounds. In this study, agave bagasse (AB) was used as a feedstock for obtaining methane, for which AB was pretreated with steam explosion and enzymatically hydrolyzed. The pretreatment conditions corresponded to severity factors (SFs) within a range from 1.65 to 2.89, while enzymatic hydrolysis was performed with enzyme loads of Cellic CTec2 within a range from 0.12 to 3.6 mgprotein g−1AB. The best global yields (including pretreatment and enzymatic hydrolysis) of total carbohydrates (TCs), glucose (GLU), xylose (XYL), and chemical oxygen demand (COD) were 0.7 g TC g−1AB, 0.12 g GLU g−1AB, 0.03 g XYL g−1AB, and 0.20 g O2 g−1AB obtained using 2.4 mgprotein g−1AB of Cellic CTec2 with agave bagasse pretreated with an SF of 2.41. The contribution of pretreatment to the global TC yield ranged from 13 to 34% for the different systems evaluated. The biochemical potential of methane (BMP) of hydrolysates (pretreatment at SF 2.41 and 2.4 mgprotein g−1AB of Cellic CTec2) was 0.284 ± 0.02 in NL CH4 g−1 COD with a COD removal of 78.4 ± 1.3. This BMP value was 40% higher than the BMP obtained in the system without enzymatic hydrolysis, indicating the impact of this step on conversion to biomethane. The results at the BMP level indicated the potential of this residue for biofuel production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manieniyan V, Thambidurai M, Selvakumar R (2009) Study on energy crisis and the future of fossil fuels. Proceedings of SHEE 10: 2234-3689 https://doi.org/10.13140/2.1.2234.3689

  2. Eisentraut A (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries. IEA Energy Papers. https://doi.org/10.1787/5kmh3njpt6r0-en

  3. Hernández-Vázquez A, Hernández S, Ortíz I (2020) Hydrothermal pretreatment of agave bagasse for biomethane production: operating conditions and energy balance. Biomass Bioenergy 142:105753. https://doi.org/10.1016/j.biombioe.2020.105753

  4. Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production 2016: 17–70. https://doi.org/10.1007/978-981-10-0687-6_4

  5. Wang K, Chen J, Sun S, Sun R (2015) Steam explosion. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of Biomass Processes and Technologies. Elsevier, Ámsterdam, pp 75–104

    Chapter  Google Scholar 

  6. Ruiz HA, Conrad M, Sun S, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun R, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 229:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  Google Scholar 

  7. Chen H, Sui W (2017) Steam explosion as a hydrothermal pretreatment in the biorefinery concept. In: Ruiz HA, Thomsen M, Trajano HL (eds) Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass. Springer, Cham, pp 317–332

    Chapter  Google Scholar 

  8. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10:866–885. https://doi.org/10.1002/biot.201400705

    Article  CAS  PubMed  Google Scholar 

  9. Aguilar DL, Rodríguez-Jasso RM, Zanuso E, Jasso de Rodríguez D, Amaya-Delgado L, Sanchez A, Ruiz HA (2018) Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresour Technol 263:112–119. https://doi.org/10.1016/j.biortech.2018.04.100

    Article  CAS  PubMed  Google Scholar 

  10. Pino MS, Rodríguez-Jasso RM, Michelin M, Ruiz HA (2019) Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr Polym 211:349–359. https://doi.org/10.1016/j.carbpol.2019.01.111

    Article  CAS  PubMed  Google Scholar 

  11. Valdez-Vazquez I, Alatriste-Mondragón F, Arreola-Vargas J, Buitrón G, Carrillo-Reyes J, León-Becerril E, Mendez-Acosta HO, Ortíz I, Weber B (2020) Comparison of biological, enzymatic, chemical and hydrothermal pretreatments for producing biomethane from Agave bagasse. Ind Crop Prod 145:112160. https://doi.org/10.1016/j.indcrop.2020.112160

    Article  CAS  Google Scholar 

  12. Galindo-Hernández KL, Tapia-Rodríguez A, Alatriste-Mondragón F, Celis LB, Arreola-Vargas J, Razo-Flores E (2018) Enhancing saccharification of Agave tequilana bagasse by oxidative delignification and enzymatic synergism for the production of hydrogen and methane. Int J Hydrog Energy 43:22116–22125. https://doi.org/10.1016/j.ijhydene.2018.10.071

    Article  CAS  Google Scholar 

  13. García-Amador R, Hernández S, Ortiz I, Cercado B (2019) Assessment of microbial electrolysis cells fed hydrolysate from agave bagasse to determine the feasibility of bioelectrohydrogen production. Rev Mex Ing Quim 18:865–874. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Garcia

    Article  Google Scholar 

  14. Rios-González J, Morales-Martínez TK, Rodríguez-Flores MF, Rodríguez-De la Garza JA, Castillo-Quiroz D, Castro-Montoya AJ, Martinez A (2017) Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresour Technol 242:184–190. https://doi.org/10.1016/j.biortech.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  15. López-Gutiérrez I, Razo-Flores E, Méndez-Acosta HO, Amaya-Delgado L, Alatriste-Mondragón F (2020) Optimization by response surface methodology of the enzymatic hydrolysis of non-pretreated agave bagasse with binary mixtures of commercial enzymatic preparations. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00698-x

  16. Pielhop T, Amgarten J, Studer MH, von Rohr PR (2017) Pilot-scale steam explosion pretreatment with 2-naphthol to overcome high softwood recalcitrance. Biotechnol Biofuels 10:130. https://doi.org/10.1186/s13068-017-0816-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618.

  18. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040

    Article  CAS  PubMed  Google Scholar 

  19. Bio-Rad Laboratories (s. f.) DC Protein Assay Instruction Manual, technical bulletin LIT448. IOP Published Bio-Rad Laboratories. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/LIT448.pdf. Accessed 30 September 2020.

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  21. Hach Company (2014) Oxygen demand, chemical Method 8000. IOP Published Hach Company. https://www.hach.com/asset-get.download.jsa?id = 7639983816 Accessed 15 June 2020

  22. Dalli SS, Rakshit SK (2015) Utilization of hemicelluloses from lignocellulosic biomass-potential products. In: Pittman KL (ed) Lignocellulose: Biotechnology, chemical, composition and future prospects. Nova Publisher Inc., NewYork, pp 85–118

  23. Montiel CV, Razo-Flores E (2018) Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency. Bioresour Technol 249:334–341. https://doi.org/10.1016/j.biortech.2017.10.032

    Article  CAS  Google Scholar 

  24. Pérez-Pimienta JA, Mojica-Álvarez RM, Sánchez-Herrera LM, Mittal A, Sykes RW (2018) Recalcitrance assessment of the agro-industrial residues from five agave species: ionic liquid pretreatment, saccharification and structural characterization. Bioenerg Res 11:551–561. https://doi.org/10.1007/s12155-018-9920-5

    Article  Google Scholar 

  25. Montoya-Rosales JJ, Olmos-Hernández DK, Palomo-Brionesa R, Montiel-Corona V, Marib AG, Razo-Flores E (2019) Improvement of continuous hydrogen production using individual and binary enzymatic hydrolysates of agave bagasse in suspended-culture and biofilm reactors. Bioresour Technol 283:251–260. https://doi.org/10.1016/j.biortech.2019.03.072

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, Costa SL, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223. https://doi.org/10.1016/j.biortech.2016.03.103

    Article  CAS  PubMed  Google Scholar 

  27. Tapia-Rodriguez A, Ibarra-Faz E, Razo-Flores E (2019) Hydrogen and methane production potential of agave bagasse enzymatic hydrolysates and comparative technoeconomic feasibility implications. Int J Hydrog Energy 44:17792–17801. https://doi.org/10.1016/j.ijhydene.2019.05.087

    Article  CAS  Google Scholar 

  28. Arreola-Vargas J, Ojeda-Castillo V, Snell-Castro R, Corona-González RI, Alatriste-Mondragón F, Méndez-Acosta HO (2015) Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield. Bioresour Technol 181:191–199. https://doi.org/10.1016/j.biortech.2015.01.036

    Article  CAS  PubMed  Google Scholar 

  29. Arreola-Vargas J, Flores-Larios A, González-Álvarez V, Corona-González RI, Méndez-Acosta HO (2016) Single and two-stage anaerobic digestion for hydrogen and methane production from acid and enzymatic hydrolysates of Agave tequilana bagasse. Int J Hydrog Energy 41:897–904. https://doi.org/10.1016/j.ijhydene.2015.11.016

    Article  CAS  Google Scholar 

  30. Breton-Deval L, Méndez-Acosta HO, González-Álvarez V, Snell-Castro R, Gutiérrez-Sánchez D, Arreola-Vargas J (2018) Agave tequilana bagasse for methane production in batch and sequencing batch reactors: acid catalyst effect, batch optimization and stability of the semi-continuous process. J Environ Manage 224:156–163. https://doi.org/10.1016/j.jenvman.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  31. Weber B, Estrada-Maya A, Sandoval-Moctezuma AC, Martínez-Cienfuegos IG (2019) Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse. J Environ Manage 245:489–495. https://doi.org/10.1016/j.jenvman.2019.05.093

    Article  CAS  PubMed  Google Scholar 

  32. Pérez-Pimienta JA, Icaza-Herrera JPA, Méndez-Acosta HO, González-Álvarez V, Méndoza-Pérez JA, Arreola-Vargas J (2020) Bioderived ionic liquid-based pretreatment enhances methane production from Agave tequilana bagasse. RSC Adv 10:14025–14032. https://doi.org/10.1039/D0RA01849J

    Article  Google Scholar 

Download references

Acknowledgments

The Cluster Biocombustibles Gaseosos is acknowledged for the grant received by V. Duran-Cruz.

Funding

This work was financed by the Mexican Department of Energy (SENER) through the Gaseous Biofuels Cluster Project 247006.

Author information

Authors and Affiliations

Authors

Contributions

V Duran-Cruz carried out the research, analyzed the data, prepared the visuals, and wrote the first draft.

S Hernández supervised the pretreatment experimentation and analyzed the data.

I Ortíz did the conceptualization, supervised the research, analyzed the data, and wrote the final draft.

Corresponding author

Correspondence to Irmene Ortíz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran-Cruz, V., Hernández, S. & Ortíz, I. Evaluation of Steam Explosion Pretreatment and Enzymatic Hydrolysis Conditions for Agave Bagasse in Biomethane Production. Bioenerg. Res. 14, 1328–1337 (2021). https://doi.org/10.1007/s12155-021-10245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10245-9

Keywords

Navigation