Skip to main content

Advertisement

Log in

Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Coastal aquifers world-wide are being confronted with several major challenges, such as overextraction of groundwater, climate change impacts, contamination by wastewater, and saltwater intrusion into water resources. Climate change induced alteration of the hydrological cycle is one of the main threats to future accessibility of water resources. Effective prediction of possible impacts of climate change on groundwater reserves, a crucial water resource, could be of great importance for sustainable water management. In a comparative study, artificial neural network (ANN), least square support vector machine (LSSVM), and nonlinear autoregressive network with exogenous inputs (NARX) models was applied to evaluate possible impacts of three representative concentration pathways (RCP) climate change scenarios (RCP2.6, RCP4.5, RCP8.5) on groundwater levels in Tasuj Plain, Iran. Four general circulation models (GCM) was used to predict temperature and precipitation values for the future period 2022–2050 and found that future temperature increased, while the amount of precipitation decreased. To improve the accuracy of three models in groundwater level prediction, db4 wavelet transform was applied. The results indicated that the Wavelet-NARX approach gave the best accuracy in forecasting groundwater level in the study area. In all cases, prediction indicated that groundwater level in all representative wells would decline in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10)

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40

    Article  Google Scholar 

  • Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes: An International Journal 23(18):2686–2696

    Article  Google Scholar 

  • Al-Maktoumi A, Zekri S, El-Rawy M, Abdalla O, Al-Wardy M, Al-Rawas G, Charabi Y (2018) Assessment of the impact of climate change on coastal aquifers in Oman. Arab J Geosci 11(17):501

    Article  Google Scholar 

  • Baghanam, A. H., Eslahi, M., Sheikhbabaei, A., & Seifi, A. J. (2020). Assessing the impact of climate change over the northwest of Iran: an overview of statistical downscaling methods. Theoretical and Applied Climatology, 1-16

  • Birara H, Pandey R, Mishra S (2020) Projections of future rainfall and temperature using statistical downscaling techniques in Tana Basin, Ethiopia. Sustainable Water Resources Management 6(5):1–17

    Article  Google Scholar 

  • Chang F-J, Chen P-A, Liu C-W, Liao VH-C, Liao C-M (2013) Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J Hydrol 499:265–274

    Article  Google Scholar 

  • Chang J, Wang G, Mao T (2015) Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J Hydrol 529:1211–1220

    Article  Google Scholar 

  • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309(1–4):229–240

    Article  Google Scholar 

  • Dehghanipour AH, Moshir Panahi D, Mousavi H, Kalantari Z, Tajrishy M (2020) Effects of water level decline in Lake Urmia, Iran, on local climate conditions. Water 12(8):2153

    Article  Google Scholar 

  • Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M et al (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59:143–156

    Article  Google Scholar 

  • Earman S, Dettinger M (2011) Potential impacts of climate change on groundwater resources–a global review. Journal of Water and Climate Change 2(4):213–229

    Article  Google Scholar 

  • Ebrahimi H, Rajaee T (2017) Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Glob Planet Chang 148:181–191

    Article  Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948

    Article  Google Scholar 

  • Francesco G (2020) Groundwater level prediction in Apulia region (southern Italy) using NARX neural network. Environ Res 110062

  • Gong Y, Wang Z, Xu G, Zhang Z (2018) A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition. Water 10(6):730

    Article  Google Scholar 

  • Gong Y, Zhang Y, Lan S, Wang H (2016) A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour Manag 30(1):375–391

    Article  Google Scholar 

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560

    Article  Google Scholar 

  • Gu Y, Zhao W, Wu Z (2010) Least squares support vector machine algorithm [J]. Journal of Tsinghua University (science and technology) 7:1063–1066

    Google Scholar 

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377(1–2):80–91

    Article  Google Scholar 

  • Guzman SM, Paz JO, Tagert MLM (2017) The use of NARX neural networks to forecast daily groundwater levels. Water Resour Manag 31(5):1591–1603

    Article  Google Scholar 

  • Guzman SM, Paz JO, Tagert MLM, Mercer AE (2019) Evaluation of seasonally classified inputs for the prediction of daily groundwater levels: NARX networks vs support vector machines. Environmental Modeling & Assessment 24(2):223–234

    Article  Google Scholar 

  • Haghighi AT, Fazel N, Hekmatzadeh AA, Klöve B (2018) Analysis of effective environmental flow release strategies for Lake Urmia restoration. Water Resour Manag 32(11):3595–3609

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Env Res Risk A 25(4):475–484

    Article  Google Scholar 

  • Haykin S (1999) Neural networks, A comprehensive foundation second edition by prentice-hall. Inc, In

    Google Scholar 

  • Idrizovic D, Pocuca V, Mandic MV, Djurovic N, Matovic G, Gregoric E (2020) Impact of climate change on water resource availability in a mountainous catchment: A case study of the Toplica River catchment. Serbia Journal of Hydrology 124992

  • Jeihouni E, Eslamian S, Mohammadi M, Zareian MJ (2019a) Simulation of groundwater level fluctuations in response to main climate parameters using a wavelet–ANN hybrid technique for the Shabestar plain, Iran. Environ Earth Sci 78(10):293

    Article  Google Scholar 

  • Jeihouni E, Mohammadi M, Eslamian S, Zareian MJ (2019b) Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study—Shabestar plain, Iran. Environ Monit Assess 191(10):620

    Article  Google Scholar 

  • Kalantari Z, Ferreira CSS, Page J, Goldenberg R, Olsson J, Destouni G (2019) Meeting sustainable development challenges in growing cities: coupled social-ecological systems modeling of land use and water changes. J Environ Manag 245:471–480

    Article  Google Scholar 

  • Kalantari Z, Ferreira CSS, Walsh RPD, Ferreira AJD, Destouni G (2017) Urbanization development under climate change: hydrological responses in a peri-urban Mediterranean catchment. Land Degrad Dev 28(7):2207–2221

    Article  Google Scholar 

  • Kalantari Z, Lyon SW, Folkeson L, French HK, Stolte J, Jansson P-E, Sassner M (2014) Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci Total Environ 466:741–754

    Article  Google Scholar 

  • Kaya Y, Üneş F, Demirci M, Taşar B, Varçin H (2018) Groundwater level prediction using artificial neural network and M5 tree models. Aerul si Apa Componente ale Mediului:195–201

  • Kisi O (2013) Least squares support vector machine for modeling daily reference evapotranspiration. Irrig Sci 31(4):611–619

    Article  Google Scholar 

  • Kişi Ö (2010) Daily suspended sediment estimation using neuro-wavelet models. Int J Earth Sci 99(6):1471–1482

    Article  Google Scholar 

  • Kisi O, Alizamir M, Zounemat-Kermani M (2017) Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Nat Hazards 87(1):367–381

    Article  Google Scholar 

  • Kumar M, Kar I (2009) Non-linear HVAC computations using least square support vector machines. Energy Convers Manag 50(6):1411–1418

    Article  Google Scholar 

  • Lee S, Lee K-K, Yoon H (2019) Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. Hydrogeol J 27(2):567–579

    Article  Google Scholar 

  • Leontaritis I, Billings SA (1985) Input-output parametric models for non-linear systems part I: deterministic non-linear systems. Int J Control 41(2):303–328

    Article  Google Scholar 

  • Marín Celestino AE, Martínez Cruz DA, Otazo Sánchez EM, Gavi Reyes F, Vásquez Soto D (2018) Groundwater quality assessment: an improved approach to k-means clustering, principal component analysis and spatial analysis: A case study. Water 10(4):437

    Article  Google Scholar 

  • Matta G, Kumar A, Nayak A, Kumar P, Kumar A, Tiwari AK (2020) Determination of water quality of Ganga River system in Himalayan region, referencing indexing techniques. Arab J Geosci 13(19):1–11

    Article  Google Scholar 

  • Matta G, Srivastava S, Pandey R, Saini K (2017) Assessment of physicochemical characteristics of Ganga Canal water quality in Uttarakhand. Environ Dev Sustain 19(2):419–431

    Article  Google Scholar 

  • Miraki S, Zanganeh SH, Chapi K, Singh VP, Shirzadi A, Shahabi H, Pham BT (2019) Mapping groundwater potential using a novel hybrid intelligence approach. Water Resour Manag 33(1):281–302

    Article  Google Scholar 

  • Mirarabi A, Nassery H, Nakhaei M, Adamowski J, Akbarzadeh A, Alijani F (2019) Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environ Earth Sci 78(15):489

    Article  Google Scholar 

  • Mohanty S, Jha MK, Kumar A, Sudheer K (2010) Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resour Manag 24(9):1845–1865

    Article  Google Scholar 

  • Nadiri AA, Chitsazan N, Tsai FT-C, Moghaddam AA (2014) Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J Hydrol Eng 19(3):520–532

    Article  Google Scholar 

  • Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S, Moghaddam AA (2017) Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Sci Total Environ 574:691–706

    Article  Google Scholar 

  • Nadiri AA, Moghaddam AA, Tsai FT, Fijani E (2013) Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of earth system science 122(4):1091–1105

    Article  Google Scholar 

  • Natarajan N, Sudheer C (2019) Groundwater level forecasting using soft computing techniques. Neural Comput & Applic:1–18

  • Nayak PC, Rao YS, Sudheer K (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20(1):77–90

    Article  Google Scholar 

  • Nourani V, Alami MT, Vousoughi FD (2015) Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J Hydrol 524:255–269

    Article  Google Scholar 

  • Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377

    Article  Google Scholar 

  • Partal T, Kişi Ö (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(1–2):199–212

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification

    Google Scholar 

  • Prinos, S. T., Lietz, A., & Irvin, R. (2002). Design of a real-time ground-water level monitoring network and portrayal of hydrologic data in southern Florida. Retrieved from

  • Quilty J, Adamowski J (2018) Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J Hydrol 563:336–353

    Article  Google Scholar 

  • Rahman AS, Hosono T, Quilty JM, Das J, Basak A (2020) Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Adv Water Resour 103595

  • Roshni T, Jha MK, Drisya J (2020) Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput & Applic:1–18

  • Sahoo M, Das T, Kumari K, Dhar A (2017) Space–time forecasting of groundwater level using a hybrid soft computing model. Hydrol Sci J 62(4):561–574

    Article  Google Scholar 

  • Salem GSA, Kazama S, Shahid S, Dey NC (2018) Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agric Water Manag 208:33–42

    Article  Google Scholar 

  • Semenov, M. A., Barrow, E. M., & Lars-Wg, A. (2002). A stochastic weather generator for use in climate impact studies. User Man Herts UK

    Google Scholar 

  • Shiri J, Kisi O, Yoon H, Lee K-K, Nazemi AH (2013) Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques. Comput Geosci 56:32–44

    Article  Google Scholar 

  • Shrestha S, Bach TV, Pandey VP (2016) Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environ Sci Pol 61:1–13

    Article  Google Scholar 

  • Siegelmann HT, Horne BG, Giles CL (1997) Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 27(2):208–215

    Article  Google Scholar 

  • Sreekanth P, Geethanjali N, Sreedevi P, Ahmed S, Kumar NR, Jayanthi PK (2009) Forecasting groundwater level using artificial neural networks. Curr Sci:933–939

  • Sreekanth P, Sreedevi P, Ahmed S, Geethanjali N (2011) Comparison of FFNN and ANFIS models for estimating groundwater level. Environ Earth Sci 62(6):1301–1310

    Article  Google Scholar 

  • Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK (2014) An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 145:324–335

    Article  Google Scholar 

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  • Tang Y, Zang C, Wei Y, Jiang M (2019) Data-driven modeling of groundwater level with Least-Square support vector machine and spatial–temporal analysis. Geotech Geol Eng 37(3):1661–1670

    Article  Google Scholar 

  • Torabi Haghighi A, Abou Zaki N, Rossi PM, Noori R, Hekmatzadeh AA, Saremi H, Kløve B (2020) Unsustainability syndrome—from meteorological to agricultural drought in arid and semi-arid regions. Water 12(3):838

    Article  Google Scholar 

  • Vaghefi SA, Keykhai M, Jahanbakhshi F, Sheikholeslami J, Ahmadi A, Yang H, Abbaspour KC (2019) The future of extreme climate in Iran. Sci Rep 9(1):1–11

    Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441

    Article  Google Scholar 

  • Wunsch A, Liesch T, Broda S (2018) Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J Hydrol 567:743–758

    Article  Google Scholar 

  • Ying Z, Wenxi L, Haibo C, Jiannan L (2014) Comparison of three forecasting models for groundwater levels: a case study in the semiarid area of West Jilin Province, China. J Water Supply Res Technol AQUA 63(8):671–683

    Article  Google Scholar 

  • Zareian MJ, Eslamian S, Safavi HR (2015) A modified regionalization weighting approach for climate change impact assessment at watershed scale. Theor Appl Climatol 122(3–4):497–516

    Article  Google Scholar 

  • Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R (2011) Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob Planet Chang 78(3–4):137–146

    Article  Google Scholar 

  • Zereg S, Boudoukha A, Benaabidate L (2018) Impacts of natural conditions and anthropogenic activities on groundwater quality in Tebessa plain, Algeria. Sustainable Environment Research 28(6):340–349

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the East Azerbaijan Regional Water Organization and Meteorological Organization for their contribution and providing data used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ghazi.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, B., Jeihouni, E. & Kalantari, Z. Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arab J Geosci 14, 115 (2021). https://doi.org/10.1007/s12517-021-06508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06508-6

Keywords

Navigation