Skip to main content

Advertisement

Log in

Synthesis and Process Parameter Optimization of Biodiesel from Jojoba Oil Using Response Surface Methodology

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Jojoba seed is an attractive alternative energy source in Saudi Arabia due to its high adaptability to harsh weather, saline water, desert, and hot temperature. In the present study, cold-pressed jojoba oil is used for the synthesis of biodiesel. In addition to that, this research work carried out a detailed optimization study of process parameters using response surface methodology. An empirical model is developed and employed for the optimization of process parameters. The study also investigates the significance of process parameters on biodiesel yield from the jojoba seed. Results show that the molar ratio of methanol to oil is the most significant input parameter, followed by the reaction time and NaOH concentration. The developed model was further validated using experimental results. The study also examined the combined effects of process parameters on process optimization. The maximum yield conditions are 15.99 molar ratio of methanol to jojoba oil, 15-min reaction time, and 1.5 wt% NaOH concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to the privacy restriction by the University of Jeddah.

References

  1. Fankhauser, S.; Jotzo, F.: Economic growth and development with low-carbon energy. Wiley Interdiscip. Rev. Clim. Change 9(1), e495 (2018)

    Article  Google Scholar 

  2. Bindraban, P.S.; Bulte, E.H.; Conijn, S.G.: Can large-scale biofuels production be sustainable by 2020? Agric. Syst. 101(3), 197–199 (2009)

    Article  Google Scholar 

  3. Canakci, M.: Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Biores. Technol. 98(6), 1167–1175 (2007)

    Article  Google Scholar 

  4. Antolın, G.; Tinaut, F.; Briceno, Y.; Castano, V.; Perez, C.; Ramırez, A.: Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83(2), 111–114 (2002)

    Article  Google Scholar 

  5. Nguyen, H.C.; et al.: Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. Eng. 85, 165–169 (2018). https://doi.org/10.1016/j.jtice.2018.01.035

    Article  Google Scholar 

  6. Gui, M.M.; Lee, K.; Bhatia, S.: Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11), 1646–1653 (2008)

    Article  Google Scholar 

  7. Busson-Breysse, J.; Farines, M.; Soulier, J.: Jojoba wax: its esters and some of its minor components. J. Am. Oil. Chem. Soc. 71(9), 999–1002 (1994)

    Article  Google Scholar 

  8. Hoda, N.: Optimization of biodiesel production from cottonseed oil by transesterification using NaOH and methanol. Energy Sources Part A Recov. Util. Environ. Eff. 32(5), 434–441 (2010)

    Article  Google Scholar 

  9. Gimbun, J.; et al.: Biodiesel production from rubber seed oil using activated cement clinker as catalyst. Procedia Eng. 53, 13–19 (2013)

    Article  Google Scholar 

  10. Da Silva, N.D.L.; Maciel, M.R.W.; Batistella, C.B.; Maciel Filho, R.: Optimization of biodiesel production from castor oil. In: Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals, pp. 405–414. Springer (2006)

  11. Fadhil, A.B.; Ahmed, K.M.; Dheyab, M.M.: Silybum marianum L. seed oil: a novel feedstock for biodiesel production. Arab. J. Chem. 10, S683–S690 (2017)

    Article  Google Scholar 

  12. Nehdi, I.A.; Sbihi, H.M.; Mokbli, S.; Rashid, U.; Al-Resayes, S.I.: Yucca aloifolia oil methyl esters. Ind. Crops Prod. 69, 257–262 (2015)

    Article  Google Scholar 

  13. Abbott, T.P.; Holser, R.A.; Plattner, B.J.; Plattner, R.D.; Purcell, H.C.: Pilot-scale isolation of simmondsin and related jojoba constituents. Ind. Crops Prod. 10(1), 65–72 (1999)

    Article  Google Scholar 

  14. Lein, S.; et al.: Simultaneous determination of carbohydrates and simmondsins in jojoba seed meal (Simmondsia chinensis) by gas chromatography. J. Chromatogr. A 977(2), 257–264 (2002)

    Article  Google Scholar 

  15. Shah, S.N.; Sharma, B.K.; Moser, B.R.; Erhan, S.Z.: Preparation and evaluation of jojoba oil methyl esters as biodiesel and as a blend component in ultra-low sulfur diesel fuel. BioEnergy Res. 3(2), 214–223 (2010). https://doi.org/10.1007/s12155-009-9053-y

    Article  Google Scholar 

  16. Al-Hamamre, Z.; Rawajfeh, K.: Investigating the energy value of jojoba as an alternative renewable energy source. Int. J. Green Energy 12(4), 398–404 (2015)

    Article  Google Scholar 

  17. Li, T.; Kou, G.; Peng, Y.; Shi, Y.: Classifying with adaptive hyper-spheres: an incremental classifier based on competitive learning. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1218–1229 (2020)

  18. Kou, G.; Lu, Y.; Peng, Y.; Shi, Y.: Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 11(01), 197–225 (2012)

    Article  Google Scholar 

  19. Box, G.E.; Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)

    MATH  Google Scholar 

  20. Ali, A.; Abdulrahman, A.: Optimization and sensitivity study of biodiesel synthesis from Jojoba oil using mixed-integer programming. Materialwissenschaft und Werkstofftechnik 51(7), 920–929 (2020). https://doi.org/10.1002/mawe.201900160

    Article  Google Scholar 

  21. Lim, S.; Lee, K.T.: Optimization of supercritical methanol reactive extraction by Response Surface Methodology and product characterization from Jatropha curcas L. seeds. Bioresour. Technol. 142, 121–130 (2013)

    Article  Google Scholar 

  22. Ong, L.K.; Effendi, C.; Kurniawan, A.; Lin, C.X.; Zhao, X.S.; Ismadji, S.: Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents. Energy 57, 615–623 (2013)

    Article  Google Scholar 

  23. Coteron, A.; Sanchez, N.; Martinez, M.; Aracil, J.: Optimisation of the synthesis of an analogue of jojoba oil using a fully central composite design. Can. J. Chem. Eng. 71(3), 485–488 (1993)

    Article  Google Scholar 

  24. Canoira, L.; Alcantara, R.; García-Martínez, M.J.; Carrasco, J.: Biodiesel from Jojoba oil-wax: transesterification with methanol and properties as a fuel. Biomass Bioenergy 30(1), 76–81 (2006)

    Article  Google Scholar 

  25. Abdelmoez, W.; Tayeb, A.M.; Mustafa, A.; Abdelhamid, M.: Green approach for biodiesel production from jojoba oil supported by process modeling and simulation. Int. J. Chem. Reactor Eng. 14(1), 185–193 (2016)

    Article  Google Scholar 

  26. Bouaid, A.; Bajo, L.; Martinez, M.; Aracil, J.: Optimization of biodiesel production from jojoba oil. Process Saf. Environ. Prot. 85(5), 378–382 (2007)

    Article  Google Scholar 

  27. Sánchez, M.; Avhad, M.R.; Marchetti, J.M.; Martínez, M.; Aracil, J.: Jojoba oil: a state of the art review and future prospects. Energy Convers. Manag. 129, 293–304 (2016). https://doi.org/10.1016/j.enconman.2016.10.038

    Article  Google Scholar 

  28. Kubendran, D.; Salma-Aathika, A.R.; Amudha, T.; Thiruselvi, D.; Yuvarani, M.; Sivanesan, S.: Utilization of leather fleshing waste as a feedstock for sustainable biodiesel production. Energy Sources Part A Recov. Util. Environ. Eff. 39(15), 1587–1593 (2017)

    Google Scholar 

  29. Danish, M.; Yahya, S.M.; Saha, B.B.: Modelling and optimization of thermophysical properties of aqueous titania nanofluid using response surface methodology. J. Therm. Anal. Calorim. 139, 3051–3063 (2020)

  30. Chabbi, A.; Yallese, M.A.; Meddour, I.; Nouioua, M.; Mabrouki, T.; Girardin, F.: Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement 95, 99–115 (2017)

    Article  Google Scholar 

  31. Danish, M.; Ginta, T.L.; Habib, K.; Carou, D.; Rani, A.M.A.; Saha, B.B.: Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int. J. Adv. Manuf. Technol. 91(5–8), 2855–2868 (2017)

    Article  Google Scholar 

  32. Devaraj, K.; et al.: Study on effectiveness of activated calcium oxide in pilot plant biodiesel production. J. Cleaner Prod. 225, 18–26 (2019)

Download references

Acknowledgements

This work was funded by the University of Jeddah, Saudi Arabia, under Grant No. (UJ-13-18-ICP). The authors, therefore, acknowledge with thanks to the University’s technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

AA was involved in conceptualization, methodology, and writing—reviewing and editing. AA was involved in RSM modeling, simulation, and validation, reviewing and editing. AA was involved in experimentation, data collection, and organization, reviewing and editing.

Corresponding author

Correspondence to Abulhassan Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, A., Ali, A. & Alfazazi, A. Synthesis and Process Parameter Optimization of Biodiesel from Jojoba Oil Using Response Surface Methodology. Arab J Sci Eng 46, 6609–6617 (2021). https://doi.org/10.1007/s13369-020-05302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05302-y

Keywords

Navigation