Skip to main content

Advertisement

Log in

Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Microalgae bio-treatment of synthetic fertilizer wastewater is particularly attractive due to their photosynthetic capabilities. Microalgae tend to convert solar energy into useful biomass, incorporating with the nutrients that present in wastewater, such as nitrogen and phosphorus. However, harvesting of microalgae remains a challenge because of the small size (3–30 μm) of microalgae cells and the repulsion between the negatively charged microalgae cells maintains a stable cell suspension. Magnetic-aided-embedding-flocculation strategy, which is one-step method by mixing microalgae, magnetic particles and flocculant together, is proposed for microalgae harvesting in order to meet cost and time effectiveness. In this study, the optimum cell separation efficiency of Chlorella vulgaris microalgae above 96% at 5 mg/L of chitosan dosage is achieved. With the aid of iron oxide particles, either micro- or nano-size, the sedimentation rate of cell flocs up to 250 cm/h is obtained when 10 mg/L of iron oxide is embedded into the cell flocs. The sedimentation rate with the embedding of iron oxide shows about 2 times faster than that of without magnetic particles. This strategy had proven effective for the polishing of the pretreated synthetic fertilizer wastewater by removing up to 53%, 74% and 70% of ortho-phosphate, nitrate and ammoniacal nitrogen, respectively. In addition, the presence of iron oxide particles and chitosan in microalgae harvesting that showed no adverse effect toward the quantity and quality of extracted lipid. This strategy is proven feasible for fertilizer wastewater treatment and biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sundaramoorthy, P.; Kunchithapatam, J.; Thamizhiniyan, P.; Venkateslu, V.: Effect of fertilizer factory effluent on germination and seedling growth of groundnut varieties. J. Ecobiol. 13, 3–8 (2001)

    Google Scholar 

  2. Singh, P.P.; Mall, M.; Singh, J.: Impact of fertilizer factory effluent on seed germination, seedling growth and chlorophyll content of gram (Cicer aeritenum). J. Environ. Biol. 27, 153–156 (2006)

    Google Scholar 

  3. Abou-Elela, S.I.; El-Kamah, H.M.; Abou-Taleb, E.: Chemical treatment of wastewater from fertilizer industry. Sci. J. Fac. Sci. Menoufia Univ. 6, 267–289 (1992)

    Google Scholar 

  4. Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.: Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19, 257–275 (2012)

    Article  Google Scholar 

  5. Chen, G.; Zhao, L.; Qi, Y.; Cui, Y.L.: Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook. J. Nanomater. 2014, 1–9 (2014)

    Article  Google Scholar 

  6. Gudin, C.; Therpenier, C.: Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Process. 6, 73–110 (1986)

    Google Scholar 

  7. Seo, J.Y.; Praveenkumar, R.; Kim, B.; Seo, J.; Park, J.; Na, J.; Jeon, S.G.; Park, S.B.; Lee, K.; Oh, Y.: Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chem. 18, 3981–3989 (2016)

    Article  Google Scholar 

  8. Brennan, L.; Owende, P.: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)

    Article  Google Scholar 

  9. Brostow, W.; Pal, S.; Singh, R.P.: A model of flocculation. Mater. Lett. 61, 4381–4384 (2007)

    Article  Google Scholar 

  10. Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T.: Harvesting of microalgae by flocculation. Fermentation 4, 93 (2018)

    Article  Google Scholar 

  11. Napan, K.; Christianson, T.; Voie, K.; Quinn, J.C.: Quantitative assessment of microalgae biomass and lipid stability post-cultivation. Front. Energy Res. 3, 15 (2015)

    Article  Google Scholar 

  12. Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C.Z.: A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol. 102, 10047–10051 (2011)

    Article  Google Scholar 

  13. Hu, Y.R.; Wang, F.; Wang, S.K.; Liu, C.Z.; Guo, C.: Efficient harvesting of marine microalgae Nannochloropsis maritime using magnetic nanoparticles. Bioresour. Technol. 138, 387–390 (2013)

    Article  Google Scholar 

  14. Mathimani, T.; Mallick, N.: A comprehensive review on harvesting of microalgae for biodiesel: key challenges and future directions. Renew. Sustain. Energy 91, 1103–1120 (2018)

    Article  Google Scholar 

  15. Yeap, S.P.; Ahmad, A.L.; Ooi, B.S.; Lim, J.: Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28, 14878–14891 (2012)

    Article  Google Scholar 

  16. Yeap, S.P.; Lim, J.; Ooi, B.S.; Ahmad, A.L.: Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J. Nanoparticle Res. 19, 368 (2017)

    Article  Google Scholar 

  17. Lim, J.; Yeap, S.P.; Low, S.C.: Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 123, 171–174 (2014)

    Article  Google Scholar 

  18. Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.K.: Optimization of microalgae coagulation process using chitosan. Chem. Eng. J. 173, 879–882 (2011)

    Article  Google Scholar 

  19. Wong, L.: Flocculation technology: double layer flocculation to enhance the sedimentation of freshwater microalgae. B. Degree, Universiti Tunku Abdul Rahman, (2016)

  20. Low, Y.J.; Lau, S.W.: Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. IOP Conf. Ser. Mater. Sci. Eng. 206, 012073 (2017)

    Article  Google Scholar 

  21. Tan, K.Y.; Ong, C.L.; Chng, L.M.; Lim, J.; Chan, D.J.C.; Toh, P.Y.: Fishpond water treatment: removal of microalgae from fishpond wastewater through embedding-flocculation and sedimentation. AIP Conf. Proc. 2157, 020007 (2019)

    Article  Google Scholar 

  22. Wu, X.; Ge, X.; Wang, D.; Tang, H.: Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf. A. 305, 89–96 (2007)

    Article  Google Scholar 

  23. Roussy, J.; Van Vooren, M.; Dempsey, B.A.; Guibal, E.: Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Res. 39, 3247–3258 (2005)

    Article  Google Scholar 

  24. Lucas, I.T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P.: Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J. Phys. Chem. C 111, 18568–18576 (2007)

    Article  Google Scholar 

  25. Xu, X.Q.; Shen, H.; Xu, J.R.; Xie, M.Q.; Li, X.J.: The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl. Surf. Sci. 253, 2158–2164 (2006)

    Article  Google Scholar 

  26. Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.K.: Magnetophoretic separation of Chlorella sp.: role of cationic polymer binder. Process Saf. Environ. Prot. 92, 515–521 (2014)

    Article  Google Scholar 

  27. Toh, P.Y.; Ng, B.W.; Chong, C.H.; Ahmad, A.L.; Yang, J.W.; Chan, D.J.C.; Lim, J.: Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 4, 4114–4121 (2014)

    Article  Google Scholar 

  28. Wu, W.; He, Q.; Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    Article  Google Scholar 

  29. Toh, P.Y.; Chai, C.C.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.: Effect of the colloidal stability of SF-IONPs on the performance of magnetophoretic separation of microalgae. AIP Conf. Proc. 1828, 020004 (2017)

    Article  Google Scholar 

  30. Mathieu, J.B.; Martel, S.: Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magn. Reson. Med. 63, 1336–1345 (2010)

    Article  Google Scholar 

  31. Faraudo, J.; Andreu, J.S.; Camacho, J.: Understand diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter. 9, 6654–6664 (2013)

    Article  Google Scholar 

  32. Leong, S.S.; Ahmad, Z.; Camacho, J.; Faraudo, J.; Lim, J.: Kinetics of low field gradient magnetophoresis in the presence of magnetically induced convection. J. Phy. Chem. 121, 5389–5407 (2017)

    Google Scholar 

  33. Chang, Q.: Chapter 3: sedimentation. In: Chang, Q. (Ed.) Colloid and interface Chemistry for water quality control, pp. 23–35. Academic Press, Cambridge (2016)

    Chapter  Google Scholar 

  34. Leong, S.S.; Yeap, S.P.; Lim, J.: Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interface Focus. 6, 20160048 (2016)

    Article  Google Scholar 

  35. Prochazkova, G.; Safarik, I.; Branyik, T.: Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour. Technol. 130, 472–477 (2013)

    Article  Google Scholar 

  36. Markeb, A.A.; Llimos-Turet, J.; Ferrer, I.; Blanquez, P.; Alonso, A.; Sanchez, A.; Moral-Vico, J.; Font, X.: The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 159, 490–500 (2019)

    Article  Google Scholar 

  37. Fraga-Garcia, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S.: Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behaviour to process realization. Nanomaterials 8, 292 (2018)

    Article  Google Scholar 

  38. Barhoumi, L.; Dewez, D.: Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed. Res. Int. 2013, 1–11 (2013)

    Article  Google Scholar 

  39. Toh, P.Y.; Tai, W.Y.; Ahmad, A.L.; Lim, J.; Chan, D.J.C.: Toxicity of bare and surface functionalized iron oxide nanoparticles towards microalgae. Int. J. Phytoremediat. 18, 643–650 (2016)

    Article  Google Scholar 

  40. Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Stoller, M.; Martinez-Ferez, A.: On the effect of pH and operating conditions on nanofiltration of two-phase olive mill wastewater. Chem. Eng. Trans. 47, 397–402 (2016)

    Google Scholar 

  41. Chung, Y.C.; Li, Y.H.; Chen, C.C.: Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J. Environ. Sci. Health Part A 40, 1775–1790 (2005)

    Article  Google Scholar 

  42. Jozwiak, T.; Mielcarek, A.; Janczukowicz, W.; Rodziewicz, J.; Majkowska-Gadomska, J.; Chojnowska, M.: Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ. Sci. Pollut. Res. 25, 18484–18497 (2018)

    Article  Google Scholar 

  43. Jozwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A.: Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. Arab. J. Chem. 12, 4104–4117 (2019)

    Article  Google Scholar 

  44. Mat Yasin, N.H.; Shafei, N.I.; Rushan, N.H.; Sepian, N.R.A.; Said, F.M.: The effect of microalgae harvesting on lipid for biodiesel production. Mater. Today Proc. 19, 1582–1590 (2019)

    Article  Google Scholar 

  45. Gutierrez, R.; Passos, F.; Ferrer, I.; Uggetti, E.; Garcia, J.: Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res. 9, 204–211 (2015)

    Article  Google Scholar 

  46. Blockx, J.; Verfaillie, A.; Thielemans, W.; Muylaert, K.: Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sust. Chem. Eng. 6, 11273–11279 (2018)

    Article  Google Scholar 

  47. Zhu, L.; Li, Z.; Hiltunen, E.: Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 11, 183 (2018)

    Article  Google Scholar 

  48. Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.: Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. J. Environ. Technol. 35, 2244–2253 (2014)

    Article  Google Scholar 

  49. Ahmad, F.; Khan, A.U.; Yasar, A.: The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Botany. 45, 461–465 (2013)

    Google Scholar 

  50. Prommuak, C.; Pravasant, P.; Quitain, A.T.; Goto, M.; Shotipruk, A.: Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng. J. 16, 157–166 (2012)

    Article  Google Scholar 

  51. Mathimani, T.; Uma, L.; Prabaharan, D.: Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 198, 575–586 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Research Fund from KenEp Resources (Asia) Sdn. Bhd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sim Siong Leong or Pey Yi Toh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loo, G.E., Chng, L.M., Yeap, S.P. et al. Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy. Arab J Sci Eng 46, 6619–6633 (2021). https://doi.org/10.1007/s13369-020-05317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05317-5

Keywords

Navigation