Skip to main content
Log in

How does frontal age influence physiological status of bacteria: a case study from the Northeastern Arabian Sea

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Sea surface temperature fronts in the Northeastern Arabian Sea (NEAS) facilitate nutrient enhancement in the surface layers, resulting in high primary production. Such high production areas contribute to the accumulation of fresh organic matter rich in carbohydrates, thereby supporting higher heterotrophic metabolism. Transparent exopolysaccharides (TEP) are one of the carbohydrate polymers released as exudates during primary production or decaying process and their breakdown is mediated by a set of ectoenzymes that includes glucosidases and chitinases. Observations were carried out in different aged NEAS fronts to elucidate the influence of frontal age on the abundance of TEP, bacterial nucleic acid content (high nucleic acid content, HNA and low nucleic acid content, LNA), and ectoenzymatic activities. The fronts were classified as younger and older, depending on their first appearance and sampling day. A clear transition from HNA to LNA bacteria, variations in TEP and related ectoenzymatic activities in the fronts was influenced by the frontal age. The younger fronts were dominated by HNA bacteria, α-glucosidase, and chitinase activity. In contrast, an acceleration in β-glucosidase activity, bacterial production, which was related to TEP concentration, was evident in the older fronts. Further, a significant increase in protist numbers in older fronts was related to effective grazing on HNA bacteria and TEP. The active turnover of TEP by bacteria and protists facilitates strong microbial loop in NEAS frontal regions. Elucidating contribution of such changes in the frontal areas will provide a basis for a better understanding of microbial carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnosti C (2004) Speed bumps and barricades in the carbon cycle: substrate structural effects on carbon cycling. Mar Chem 92:263–273

    Article  CAS  Google Scholar 

  • Arnous MB, Courcol N, Carrias JF (2010) The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin. Aquat sci 72:245–253

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Ballen-Segura M, Felip M, Catalan J (2017) Some mixotrophic flagellate species selectively graze on Archaea. Appl Environ Microbiol 83:e02317-e2416

    Article  CAS  PubMed  Google Scholar 

  • Barman TE (1969) Enzyme handbook, 2nd edn. Springer, New York, p 510

    Book  Google Scholar 

  • Bar-Zeev E, Rahav E (2015) Microbial metabolism of transparent exopolymer particles during the summer months along a eutrophic estuary system. Front Microbiol 6:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkin IM, Cornillon PC, Sherman K (2009) Fronts in large marine ecosystems. Prog Oceanogr 81:223–236

    Article  Google Scholar 

  • Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PV, Grossart HP, Bhosle NB, Simon M (2005) Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiol Ecol 53:255–264

    Article  CAS  PubMed  Google Scholar 

  • Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518

    Article  CAS  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, Van Pée KH (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 48:9724–9727

    Article  CAS  PubMed  Google Scholar 

  • Busch K, Endres S, Iversen MH, Michels J, Nöthig EM, Engel A (2017) Bacterial colonization and vertical distribution of marine gel particles (TEP and CSP) in the Arctic Fram Strait. Front Mar Sci 4:166

    Article  Google Scholar 

  • Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologia 470:63–95

    Article  CAS  Google Scholar 

  • Chitari RR (2019) Studies on ecology of microphytoplankton from the Northern Indian Ocean. Ph.D. thesis, Goa University, Goa, India.

  • Christaki U, Courties C, Massana R, Catala P, Lebaron P, Gasol JM, Zubkov MV (2011) Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol Oceanogr Methods 9:329–339

    Article  Google Scholar 

  • Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40:1042–1049

    Article  CAS  Google Scholar 

  • Chróst RJ (1989) Characterization and significance of β-glucosidase activity in lake water. Limnol Oceanogr 34:660–672

    Article  Google Scholar 

  • Chróst RJ (1990) Microbial ectoenzymes in aquatic environments. Aquatic microbial ecology. Springer, New York, pp 47–78

    Chapter  Google Scholar 

  • Chróst RJ (1992) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243:61–70

    Article  Google Scholar 

  • Chrost RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. Microbial enzymes in aquatic environments. Springer, New York, pp 29–59

    Chapter  Google Scholar 

  • Croot PL, Passow U, Assmy P, Jansen S, Strass VH (2007) Surface active substances in the upper water column during a Southern Ocean Iron Fertilization Experiment (EIFEX). Geophys Res Lett 34:1–5

    Article  Google Scholar 

  • De La Rocha CL, Nowald N, Passow U (2008) Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: further implications for the ballast hypothesis. Global Biogeochem Cycles 22:1–10

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Ducklow HW, Carlson CA, Smith WO (1998) Bacterial growth in experimental plankton assemblages and seawater cultures from the Phaeocystis antarctica bloom in the Ross Sea, Antarctica. Aquat Microb Ecol 168:229–244

    Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutz J, Breteler WK, Kramer G (2005) Inhibition of copepod feeding by exudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. Harmful Algae 4:929–940

    Article  Google Scholar 

  • Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Res Part I Oceanogr Res Pap 51:83–92

    Article  CAS  Google Scholar 

  • Eswaran R, Khandeparker L (2017) Seasonal variation in bacterial community composition and β-glucosidase expression in a tropical monsoon-influenced estuary. Aquat Microb Ecol 80:273–287

    Article  Google Scholar 

  • Fernández M, Bianchi M, Van Wambeke F (1994) Bacterial biomass, heterotrophic production and utilization of dissolved organic matter photosynthetically produced in the Almeria-Oran front. J Mar Syst 5:313–325

    Article  Google Scholar 

  • Fiala M, Sournia A, Claustre H, Marty JC, Prieur L, Vétion G (1994) Gradients of phytoplankton abundance, composition and photosynthetic pigments across the Almeria-Oran front (SW Mediterranean Sea). J Mar Syst 5:223–233

    Article  Google Scholar 

  • Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, Shalapyonok A, Olson RJ, Landry MR, Brown SL, Liu HB (2000) Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep Sea Res Part II Top Stud Oceanogr 47:1387–1422

    Article  Google Scholar 

  • Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagström Å (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giroldo D, Henriques Vieira AA, Paulsen BS (2003) relative increase of deoxy sugars during microbial degradation of an extracellular polysaccharide released by a tropical freshwater Thalassiosira sp. (Bacillariophyceae). J Phycol 39:1109–1115

    Article  CAS  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. Advances in microbial ecology. Springer, Boston, pp 387–430

    Chapter  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemie, New York

    Google Scholar 

  • Grossart HP, Czub G, Simon M (2006) Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol 8:1074–1084

    Article  PubMed  Google Scholar 

  • Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M (2015) Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs 13:5993–6018

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121

    Article  CAS  PubMed  Google Scholar 

  • Harlay J, De Bodt C, Engel A, Jansen S, d’Hoop Q, Piontek J, Van Oostende N, Groom S, Sabbe K, Chou L (2009) Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay. Deep Sea Res Part I Oceanogr Res Pap 56:1251–1265

    Article  CAS  Google Scholar 

  • Helbert W (2017) Marine polysaccharide sulfatases. Front Mar Sci 4:6

    Article  Google Scholar 

  • Holloway CF, Cowen JP (1997) Development of a scanning confocal laser microscopic technique to examine the structure and composition of marine snow. Limnol Oceanogr 42:1340–1352

    Article  CAS  Google Scholar 

  • Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. Handbook of methods in aquatic microbial ecology. CRC Press, Cambridge, pp 423–431

    Google Scholar 

  • Hoppe HG, Arnosti C, Herndl GJ (2002) Ecological significance of bacterial enzymes in the marine environment. Enzymes in the environment: activity, ecology, and applications. Marcel Decker, New York, pp 73–107

    Google Scholar 

  • Jackson GA (1995) TEP and coagulation during a mesocosm experiment. Deep Sea Res II 42:215–222

    Article  Google Scholar 

  • Janse I, Van Rijssel M, Gottschal JC, Lancelot C, Gieskes WW (1996) Carbohydrates in the North Sea during spring blooms of Phaeocystis: a specific fingerprint. Aquat Microb Ecol 10:97–103

    Article  Google Scholar 

  • Khandeparker L, Eswaran R, Hede N, Anil AC (2018) Significance of metabolically active bacterioplankton in the frontal regions of the Northeastern Arabian Sea. Aquat sci 80:38

    Article  Google Scholar 

  • Klein C, Claquin P, Pannard A, Napoléon C, Le Roy B, Véron B (2011) Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems. Mar Ecol Prog Ser 427:13–27

    Article  CAS  Google Scholar 

  • Krishna MS, Mukherjee J, Dalabehera HB, Sarma VVSS (2018) Particulate organic carbon composition in temperature fronts of the northeastern Arabian Sea during winter. J Geophys Res Biogeosci 123:463–478

    Article  CAS  Google Scholar 

  • Lebaron P, Servais P, Baudoux AC, Bourrain M, Courties C, Parthuisot N (2002) Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat Microb Ecol 28:131–140

    Article  Google Scholar 

  • Ling SC, Alldredge AL (2003) Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)? J Plankton Res 25:507–515

    Article  CAS  Google Scholar 

  • Madhupratap M, Prasanna Kumar S, Bhattathiri PMA, Dileep Kumar M, Raghukumar S, Nair KKC, Ramaiah N (1996) Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384:549–552

    Article  CAS  Google Scholar 

  • Mari X, Rassoulzadegan F (2004) Role of TEP in the microbial food web structure. I. Grazing behavior of a bacterivorous pelagic ciliate. Mar Ecol Prog Ser 279:13–22

    Article  Google Scholar 

  • Misic C, Fabiano M (2006) Ectoenzymatic activity and its relationship to chlorophyll-a and bacteria in the Gulf of Genoa (Ligurian Sea, NW Mediterranean). J Mar Syst 60:193–206

    Article  Google Scholar 

  • Monticelli LS, Caruso G, Decembrini F, Caroppo C, Fiesoletti F (2014) Role of prokaryotic biomasses and activities in carbon and phosphorus cycles at a coastal, thermohaline front and in offshore waters (Gulf of Manfredonia, Southern Adriatic Sea). Microb Ecol 67:501–519

    Article  CAS  PubMed  Google Scholar 

  • Mopper K, Ramana KS, Drapeau DT (1995) The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Res Part II Top Stud Oceanogr 42:47–73

    Article  CAS  Google Scholar 

  • Myklestad S, Haug A (1972) Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. J Exp Mar Biol Ecol 9:125–136

    Article  CAS  Google Scholar 

  • Nosaka Y, Yamashita Y, Suzuki K (2017) Dynamics and origin of transparent exopolymer particles in the Oyashio Region of the Western Subarctic Pacific during the Spring diatom bloom. Front Mar Sci 4:79

    Article  Google Scholar 

  • Ortega-Retuerta E, Duarte CM, Reche I (2010) Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean Sea. Microb Ecol 59:808–818

    Article  PubMed  Google Scholar 

  • Ortega-Retuerta E, Marrasé C, Muñoz-Fernández A, Sala MM, Simó R, Gasol JM (2018) Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW Mediterranean Sea. Sci Total Environ 631:180–190

    Article  PubMed  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res Part I Oceanogr Res Pap 41:335–357

    Article  CAS  Google Scholar 

  • Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredge AL (2001) The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–346

    Article  Google Scholar 

  • Pedrotti ML, Peters F, Beauvais S, Vidal M, Egge J, Jacobsen A, Marrasé C (2010) Effects of nutrients and turbulence on the production of transparent exopolymer particles: a mesocosm study. Mar Ecol Prog Ser 419:57–69

    Article  CAS  Google Scholar 

  • Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol 10:255–263

    Article  Google Scholar 

  • Piontek J, Händel N, De Bodt C, Harlay J, Chou L, Engel A (2011) The utilization of polysaccharides by heterotrophic bacterioplankton in the Bay of Biscay (North Atlantic Ocean). J Plankton Res 33:1719–1735

    Article  CAS  Google Scholar 

  • Prieto L, Navarro G, Cozar A, Echevarria F, Garcia CM (2006) Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep Sea Res Part II Top Stud Oceanogr 53:1314–1328

    Article  Google Scholar 

  • Pugnetti A, Armeni M, Camatti E, Crevatin E, Dell’Anno A, Del Negro P, Milandri A, Socal G, Umani SF, Danovaro R (2005) Imbalance between phytoplankton production and bacterial carbon demand in relation to mucilage formation in the Northern Adriatic Sea. Sci Total Environ 353:162–177

    Article  CAS  PubMed  Google Scholar 

  • Ramseier MK, von Gunten U, Freihofer P, Hammes F (2011) Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate (VI), and permanganate. Water Res 45:1490–1500

    Article  CAS  PubMed  Google Scholar 

  • Rgens KJ, Massana R (2008) Protistan grazing on marine bacterioplankton. Microbial ecology of the oceans. Wiley, Hoboken, p 383

    Chapter  Google Scholar 

  • Roy R, Anil AC (2015) Complex interplay of physical forcing and Prochlorococcus population in ocean. Prog Oceanogr 137:250–260

    Article  Google Scholar 

  • Roy R, Chitari R, Kulkarni V, Krishna MS, Sarma VVSS, Anil AC (2015) CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea. J Mar Syst 144:81–91

    Article  Google Scholar 

  • Samo TJ, Pedler BE, Ball GI, Pasulka AL, Taylor AG, Aluwihare LI, Azam F, Ralf G, Landry MR (2012) Microbial distribution and activity across a water mass frontal zone in the California current ecosystem. J Plankton Res 34:802–814

    Article  CAS  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Sarma VVSS, Desai DV, Patil JS, Khandeparker L, Aparna SG, Shankar D, D’Souza S, Dalabehera HB, Mukherjee J, Sudharani P, Anil AC (2018) Ecosystem response in temperature fronts in the northeastern Arabian Sea. Prog Oceanogr 165:317–331

    Article  Google Scholar 

  • Schattenhofer M, Wulf J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM (2011) Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Syst Appl Microbiol 34:470–475

    Article  PubMed  Google Scholar 

  • Schuster S, Herndl GJ (1995) Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Mar Ecol Prog Ser 124:227–236

    Article  Google Scholar 

  • Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, Bass D, Jost S, Boenigk J (2013) Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7:1519

    Article  PubMed  PubMed Central  Google Scholar 

  • Sintes E, del Giorgio PA (2014) Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. Front Microbiol 5:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Smestad B, Haug A, Myklestad S (1975) Structural studies of the extracellular polysaccharide produced by the diatom Chaeotoceros curvisetus cleve. Acta Chem Scand B 29:337–340

    Article  CAS  PubMed  Google Scholar 

  • Smucker RA, Dawson R (1986) Products of photosynthesis by marine phytoplankton: chitin in TCA “protein” precipitates. J Exp Mar Biol Ecol 104:143–152

    Article  CAS  Google Scholar 

  • Somville M (1984) Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Appl Environ Microbiol 48:1181–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Størseth TR, Kirkvold S, Skjermo J, Reitan KI (2006) A branched β-d-(1→ 3, 1→ 6)-glucan from the marine diatom Chaetoceros debilis (Bacillariophyceae) characterized by NMR. Carbohydr Res 341:2108–2114

    Article  PubMed  Google Scholar 

  • Tang KW, Turk V, Grossart HP (2010) Linkage between crustacean zooplankton and aquatic bacteria. Aquat Microb Ecol 61:261–277

    Article  Google Scholar 

  • ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). https://www.canoco.com.

  • Thornton DC (2004) Formation of transparent exopolymeric particles (TEP) from macroalgal detritus. Mar Ecol Prog Ser 282:1–12

    Article  Google Scholar 

  • Vipin P, Sarkar K, Aparna SG, Shankar D, Sarma VVSS, Gracias DG, Krishna MS, Srikanth G, Mandal R, Rao ER, Rao NS (2015) Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November–December 2012. J Mar Syst 150:1–11

    Article  Google Scholar 

  • Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J 3:889–902

    Article  CAS  PubMed  Google Scholar 

  • Woodson CB, Litvin SY (2015) Ocean fronts drive marine fishery production and biogeochemical cycling. PNAS 112:1710–1715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Director, NIO, for his support and the captain, officers and crew members of SSK # 060 cruise for helping us on-board. We also thank other members of the cruise and Ocean Finder teammates. The present study was supported by the OCEAN FINDER programme PSC 0105 of CSIR-NIO. R.E. acknowledges CSIR for the award of Senior Research Fellowship (SRF award no: 31/26(282)/2015-EMRI). He is a registered doctoral student in the School of Earth, Ocean and Atmospheric Sciences, Goa University. This is a NIO contribution No. 6655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidita Khandeparker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

27_2020_770_MOESM1_ESM.pdf

Supplementary file1 Spatial and vertical profiles of a) HNA-complexity (SSC) b) LNA-complexity (SSC), c) HNA-DNA content (FL1), d) LNA-DNA content (FL1), e) variation in DNA content ratio of HNA and LNA bacteria, f) variation between complexity ratio of HNA and LNA bacteria along the cruise transect. Profiles with a symbol are "frontal"; unmarked profiles are "non-frontal" stations in each transect (PDF 4110 KB)

27_2020_770_MOESM2_ESM.eps

Supplementary file2 Response of abiotic and biotic variables in the non-front and fronts of different regions in the NEAS. All values are expressed as a depth-integrated; X-axis indicate different variables; Different Y-axis represent the units for different variables. (EPS 1617 KB)

Supplementary file3 (EPS 1658 KB)

Supplementary file4 (EPS 1588 KB)

Supplementary file5 (DOCX 14 KB)

Supplementary file6 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandeparker, L., Eswaran, R. & Anil, A.C. How does frontal age influence physiological status of bacteria: a case study from the Northeastern Arabian Sea. Aquat Sci 83, 17 (2021). https://doi.org/10.1007/s00027-020-00770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-020-00770-8

Keywords

Navigation