Skip to main content
Log in

A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

We present an endlessly single-mode, bend-insensitive and highly birefringent photonic crystal fibre (PCF) for efficient wave transmission in the terahertz (THz) spectrum. To facilitate flat dispersion and high birefringence, a diamond-shaped porous core is introduced inside the Zeonex (background material)-based hexagonal porous cladding. Moreover, the dense geometrical arrangement of the regular hexagonal lattice in the cladding region holds maximum usable optical power inside the porous core. The major geometrical parameter of the proposed PCF such as core porosity has been optimized to improve the optical guiding parameters. The numerically investigated outcomes have shown an ultrahigh birefringence and numerical aperture of 0.0888 and 0.57, respectively. Apart from this, very low bending and material losses of \(3.01 \times 10^{ - 20}\) cm−1 and 0.01451 cm−1 with flattened dispersion variation of ± 0.2463 ps/THz/cm have been achieved over the broad THz band (i.e. 0.8–1.3 THz). Additionally, our proposed PCF sustains endlessly single-mode operation with a very high core power fraction of 75.28%. With all these promising results, the proposed PCF would be a potential candidate for polarization preserving as well as for efficient broadband transmission applications in the THz regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbott D, Zhang XC (2007) T-ray imaging, sensing, and retection. Proc IEEE 95:1509–1513

    Article  Google Scholar 

  • Ademgil H (2016) Highly birefringent large mode area photonic crystal fiber-based sensor for interferometry applications. Mod Phys Lett B 30(36):1650422

    Article  CAS  Google Scholar 

  • Ahmed K, Paul BK, Chowdhury S, Sen S, Islam MI, Islam MS, Hasan MR, Asaduzzaman S (2017) Design of a single mode photonic crystal fiber with ultra-low material loss and large effective mode area in THz regime. IET Optoelectron 11:265–271

    Article  Google Scholar 

  • Ahmed K, Paul BK, Islam MS, Chowdhury S, Sen S, Islam MI, Asaduzzaman S (2018) Ultra high birefringence and lower beat length for square shape PCF: analysis effect on rotation angle and eccentricity. Alex Eng J 57(4):3683–3691. https://doi.org/10.1016/j.aej.2018.01.018

    Article  Google Scholar 

  • Atakaramians S, Afshar S, Fischer BM, Abbott D, Monro TM (2009) Low loss, low dispersion and highly birefringent terahertz porous fibers. Opt Commun 282:36–38

    Article  CAS  Google Scholar 

  • Atakaramians S, Afshar S, Heidepriem HE, Nagel M, Fischer BM, Abbott D, Monro TM (2009) THz porous fibers: design, fabrication and experimental characterization. Opt Exp 17(16):14053–14062

    Article  CAS  Google Scholar 

  • Awad MM, Cheville RA (2005) Transmission terahertz waveguide-based imaging below the diffraction limit. Appl Phys Lett 86:221107

    Article  Google Scholar 

  • Berghmans F, Beernaert T, Sulejmani S et al (2011) Photonic crystal fiber Bragg grating based sensors-opportunities for applications in healthcare. Opt Sens Biophoton SPIE OSA IEEE 8311:831102–831111

    Article  Google Scholar 

  • Bowden B, Harrington JA, Mitrofanov O (2007) Silver/polystyrene coated hollow glass waveguides for the transmission of terahertz radiation. Opt Lett 32:2945–2947

    Article  CAS  Google Scholar 

  • Chen HB, Chen DR, Hong Z (2009) Squeezed lattice elliptical hole terahertz fiber with high birefringence. Appl Opt 48:3943–3947

    Article  Google Scholar 

  • Hasan MR, Islam MA, Rifat AA (2016b) A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J Eur Opt Soc Rapid Publ 12:15

    Article  Google Scholar 

  • Hasan MR, Islam MA, Rifat AA (2016c) A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J Eur Opt Soc Rapid Publ 12(1):1–8

    Article  Google Scholar 

  • Hasan MR, Islam MA, Anower MS, Razzak SMA (2016a) Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl Opt 55:8441–8447

    Article  CAS  Google Scholar 

  • Islam R, Habib MS, Hasanuzzaman GKM, Rana S, Sadath MA, Markos C (2016) A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photon Technol Lett 28:1537–1540

    Article  Google Scholar 

  • Islam MS, Sultana J, Dinovitser A, Faisal M, Islam MR, Ng BWH, Abbott D (2018a) Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl Opt 57:666–672. https://doi.org/10.1364/AO.57.000666

    Article  CAS  Google Scholar 

  • Islam MS, Sultana J, Faisalb M (2018b) A modified hexagonal photonic crystal fiber for terahertz applications. Opt Mater 79:336–339

    Article  CAS  Google Scholar 

  • Kanmani R, Ahmed K, Roy S (2019) The performance of hosting and core materials for slotted core Q-PCF in terahertz spectrum. Optik 194:163084

    Article  CAS  Google Scholar 

  • Knight JC, Birks TA, Russell PJ, Atkin DM (1996b) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21(19):1547–1549

    Article  CAS  Google Scholar 

  • Knight JC, Birks TA, Russell PSJ, Atkin DM (1996a) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21:1547–1549

    Article  CAS  Google Scholar 

  • Liao J, Huang T, Xiong Z, Kuang F, Xie Y (2017) Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion. Optik 135:42–49

    Article  CAS  Google Scholar 

  • Luke S, Sudheer SK, Pillai VM (2016) Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss. Optik 127:11138–11142

    Article  CAS  Google Scholar 

  • Medjouri A, Simohamed LM, Ziane O, Boudrioua A (2015) Investigation of high birefringence and chromatic dispersion management in photonic crystal fiber with square air holes. Optik. https://doi.org/10.1016/j.ijleo.2015.05.119

    Article  Google Scholar 

  • Mou FA, Rahman MM, Islam MR, Bhuiyan MIH (2020) Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens Biosens Res 29:100346

    Google Scholar 

  • Nagel M, Bolivar PH, Brucherseifer M, Kurz H, Bosserho A, Bttner R (2002) Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett 80:154–156

    Article  CAS  Google Scholar 

  • Paul BK, Ahmed K (2020) Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme. Opt Mater 100:109634

    Article  CAS  Google Scholar 

  • Paul BK, Haque MA, Ahmed K, Sen S (2019) A novel hexahedron photonic crystal fiber in terahertz propagation: design and analysis. Photonics. https://doi.org/10.3390/photonics6010032

    Article  Google Scholar 

  • Rana S, Rakin AS, Subbaraman H, Leonhardt R, Abbott D (2017) Low loss and low dispersion fiber for transmission applications in the terahertz regime. IEEE Photon Technol Lett 29:830–833

    Article  CAS  Google Scholar 

  • Singh S, Prajapati YK (2019a) Dual-polarized ultrahigh sensitive gold/MoS2/graphene based D-shaped PCF refractive index sensor in visible to near—IR region. Opt Quantum Electron 52(17):1–15

    Google Scholar 

  • Singh S, Prajapati YK (2019b) Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface. Appl Phys A 125(6):437

    Article  Google Scholar 

  • Singh S, Prajapati YK (2020) TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik. https://doi.org/10.1016/j.ijleo.2020.165525

    Article  Google Scholar 

  • Skorobogatiy M, Upuis A (2007) Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl Phys Lett 90:113514

    Article  Google Scholar 

  • Sultana J, Islam MS, Islam MR, Abbott D (2017) High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron Lett 54:61–62

    Article  Google Scholar 

  • Sultana J, Islam MS, Faisal M, Islam MR, Ng BWH, Heidepriem HE, Abbott D (2018) Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt Commun 407:92–96

    Article  CAS  Google Scholar 

  • Upadhyay A, Singh S, Prajapati YK, Tripathi R (2020) Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber. Optik 218:164997

    Article  CAS  Google Scholar 

  • Valtna-Lukner H, Repän J, Valdma SM, Piksarv P (2016) Endlessly single-mode photonic crystal fiber as a high-resolution probe. Appl Opt 55(33):9407–9411

    Article  Google Scholar 

  • Wang K, Mittleman DM (2004) Metal wires for terahertz waveguiding. Nature 432:376–379

    Article  CAS  Google Scholar 

  • Withayachumnankul W (2009) Engineering aspects of terahertz time-domain spectroscopy. Ph. D. thesis, The University of Adelaide

  • Withayachumnankul W, Png GM, Yin X, Atakaramians S, Jones I, Lin H, Ung BSY, Balakrishnan J, Ng BWH, Ferguson B, Mickan SP, Fischer BM, Abbott D (2007) T-ray sensing and imaging. Proc IEEE 95:1528–1558

    Article  CAS  Google Scholar 

  • Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, Jiang X, Wu W (2016) Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photon J 8:4502711

    Google Scholar 

  • Zhao G, Mors MT, Wenckebach T (2007) Terahertz dielectric properties of polystyrene foam. J Opt Soc Am B 19:1476–1479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Ethics declarations

Conflict of interest

The authors have no conficts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., Singh, S., Sharma, D. et al. A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity. Appl Nanosci 11, 1021–1030 (2021). https://doi.org/10.1007/s13204-020-01664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01664-9

Keywords

Navigation