Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 15, 2021

Compounds of the types Pn(pyS)3 (Pn = P, As, Bi; pyS: pyridine-2-thiolate) and Sb(pyS)xPh3–x (x = 3–1); molecular structures and electronic situations of the Pn atoms

  • Erik Wächtler , Robert Gericke , Theresa Block , Birgit Gerke , Rainer Pöttgen and Jörg Wagler EMAIL logo

Abstract

The compounds Pn(pyS)3 (Pn = P, As, Sb, Bi) were synthesized from the respective chloride (Pn = P, As, Sb) or nitrate (Bi), pyridine-2-thiol (pySH) and triethylamine (NEt3) as a supporting base in THF (P, Sb), CHCl3 (As) or methanol (Bi). Sb(pyS)3 was also obtained from the reaction of SbCl3 with LipyS (prepared in situ) in methanol. The compounds Sb(pyS)2Ph and Sb(pyS)Ph2 were prepared in a one-pot reaction starting from SbCl3 and SbPh3 (1:1 ratio). Upon Cl/pyS substitution, the resulting reaction mixture allows for a facile separation of the products in hot hexane. P(pyS)3 and As(pyS)3 crystallize isostructurally to the reported structure of Sb(pyS)3 with κ-S-bound pyS ligands. These crystal structures feature close Pn···Pn contacts which are most pronounced for the arsenic derivative. Bi(pyS)3 adopts a different molecular structure in the solid state, which features two chelating (κ2-S,N-pyS) ligands and a κ-S-bound ligand. The presence of N→Bi interactions between the nitrogen atom of the κ-S-pyS ligand and the Bi atom of another molecule renders this structure a polymer chain along the crystallographic b axis with Bi⋅⋅⋅Bi van-der-Waals contacts. The structures of this set of Pn(pyS)3 compounds were also studied in solution using 1H NMR spectroscopy, revealing equivalent pyS ligands in discrete Pn(pyS)3 molecules. The molecular structure of Sb(pyS)Ph2 was optimized by quantum chemical methods, and a comparison with the structures reported for the other Sb/pyS/Ph combinations reveals Sb(pyS)2Ph to feature the strongest Sb···N interactions with the κ-S-pyS ligand. The results of 1H NMR spectroscopic investigations of the compounds Sb(pyS)xPh3–x (x = 3–0) suggest the Ph protons in ortho position to be incorporated into intramolecular C–H···S contacts for x = 2 and 1. Natural localized molecular orbital (NLMO) calculations were employed in order to gain insights into the electronic situations of the Pn atoms and Pn–R bonds (R = S, C), especially for the effects caused by formal substitution of Pn in the compounds Pn(pyS)3 and the ligand patterns in the compounds Sb(pyS)xPh3–x (x = 3–0). For the latter series of compounds, the electronic situation of the Sb atom was further studied by 121Sb Mössbauer spectroscopy, providing a correlation between the calculated electron density at Sb [ρ(0)] and the experimentally observed isomer shift δ. The missing link between group 15 and group 13 metal compounds of the type M(pyS)3, compound Al(pyS)3, was synthesized in this work. In the solid state (confirmed crystallographically), the mer isomer of this tris-chelate complex with distorted octahedral Al coordination sphere was found. This coordination mode was confirmed for the solution state (CDCl3) by 1H and 13C NMR spectroscopy at T = −40 °C.


Dedicated to: In memory of Professor Edwin Weber who was a great teacher of organic chemistry.



Corresponding author: Jörg Wagler, Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596Freiberg, Germany, E-mail:

Acknowledgments

Dr. Erica Brendler is acknowledged for recording the solid-state 13C NMR spectra of As(pyS)3 and Bi(pyS)3.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nakatsu, Y., Nakamura, Y., Matsumoto, K., Ooi, S. Inorg. Chim. Acta 1992, 196, 81–88; https://doi.org/10.1016/s0020-1693(00)82963-1.Search in Google Scholar

2. Umakoshi, K., Kinoshita, I., Ichimura, A., Ooi, S. Inorg. Chem. 1987, 26, 3551–3556; https://doi.org/10.1021/ic00268a027.Search in Google Scholar

3. Takashima, Y., Nakayama, Y., Hashiguchi, M., Hosoda, T., Yasuda, H., Hirao, T., Harada, A. Polymer 2006, 47, 5762–5774; https://doi.org/10.1016/j.polymer.2006.06.033.Search in Google Scholar

4. Raper, E. S. Coord. Chem. Rev. 1996, 153, 199–255; https://doi.org/10.1016/0010-8545(95)01233-8.Search in Google Scholar

5. Chadwick, S., Ruhlandt-Senge, K. Chem. Eur. J. 1998, 4, 1768–1780; https://doi.org/10.1002/(sici)1521-3765(19980904)4:9<1768::aid-chem1768>3.0.co;2-j.10.1002/(SICI)1521-3765(19980904)4:9<1768::AID-CHEM1768>3.0.CO;2-JSearch in Google Scholar

6. Pedrares, A. S., Teng, W., Ruhlandt-Senge, K. Chem. Eur. J. 2003, 9, 2019–2024.10.1002/chem.200204294Search in Google Scholar

7. Chadwick, S., Englich, U., Senge, M. O., Noll, B. C., Ruhlandt-Senge, K. Organometallics 1998, 17, 3077–3086; https://doi.org/10.1021/om980012h.Search in Google Scholar

8. Rose, D. J., Chang, Y. D., Chen, Q., Kettler, P. B., Zubierta, J. Inorg. Chem. 1995, 34, 3973–3979; https://doi.org/10.1021/ic00119a019.Search in Google Scholar

9. Abram, S., Maichle-Mössmer, C., Abram, U. Polyhedron 1997, 16, 2291–2298; https://doi.org/10.1016/s0277-5387(96)00536-0.Search in Google Scholar

10. Chou, W.-L., Chang, H.-H., Yih, K.-H., Lee, G.-H. J. Chin. Chem. Soc. 2007, 54, 323–330; https://doi.org/10.1002/jccs.200700047.Search in Google Scholar

11. Naktode, K., Reddy, T. D. N., Nayek, H. P., Mallik, B. S., Panda, T. K. RSC Adv. 2015, 5, 51413–51420; https://doi.org/10.1039/c5ra04696c.Search in Google Scholar

12. Dyson, G., Hamilton, A., Mitchell, B., Owen, G. R. Dalton Trans. 2009, 6120–6126, https://doi.org/10.1039/b905409j.Search in Google Scholar

13. Dyson, G., Zech, A., Rawe, B. W., Haddow, M. F., Hamilton, A., Owen, G. R. Organometallics 2011, 30, 5844–5850; https://doi.org/10.1021/om200694r.Search in Google Scholar

14. Iannetelli, A., Tizzard, G., Coles, S. J., Owen, G. R. Organometallics 2018, 37, 2177–2187; https://doi.org/10.1021/acs.organomet.8b00306.Search in Google Scholar

15. Zech, A., Haddow, M. F., Othman, H., Owen, G. R. Organometallics 2012, 31, 6753–6760; https://doi.org/10.1021/om300482m.Search in Google Scholar

16. Damude, L. C., Dean, P. A. W., Manivannan, V., Srivastava, R. S., Vittal, J. J. Can. J. Chem. 1990, 68, 1323–1331; https://doi.org/10.1139/v90-204.Search in Google Scholar

17. Wächtler, E., Gericke, R., Kutter, S., Brendler, E., Wagler, J. Main Group Met. Chem. 2013, 36, 181–191; https://doi.org/10.1515/mgmc-2013-0041.Search in Google Scholar

18. Baus, J. A., Burschka, C., Bertermann, R., Fonseca Guerra, C., Bickelhaupt, F. M., Tacke, R. Inorg. Chem. 2013, 52, 10664–10676; https://doi.org/10.1021/ic401698a.Search in Google Scholar

19. Sousa-Pedrares, A., Casanova, M. I., García-Vázquez, J. A., Durán, M. L., Romero, J., Sousa, A., Silver, J., Titler, P. J. Eur. J. Inorg. Chem. 2003, 678–686, https://doi.org/10.1002/ejic.200390094.Search in Google Scholar

20. Block, E., Ofori-Okai, G., Kang, H., Wu, J., Zubierta, J. Inorg. Chim. Acta 1990, 190, 5–6.10.1016/S0020-1693(00)80224-8Search in Google Scholar

21. Wächtler, E., Oro, L. A., Iglesias, M., Gerke, B., Pöttgen, R., Gericke, R., Wagler, J. Chem. Eur. J. 2017, 23, 3447–3454; https://doi.org/10.1002/chem.201605485.Search in Google Scholar PubMed

22. Wächtler, E., Gericke, R., Block, T., Pöttgen, R., Wagler, J. Inorg. Chem. 2020, 59, 15541–15552; https://doi.org/10.1021/acs.inorgchem.0c02615.Search in Google Scholar PubMed

23. Wächtler, E., Gericke, R., Brendler, E., Gerke, B., Langer, T., Pöttgen, R., Zhechkov, L., Heine, T., Wagler, J. Dalton Trans. 2016, 45, 14252–14264; https://doi.org/10.1039/c6dt01621a.Search in Google Scholar PubMed

24. Wächtler, E., Gericke, R., Zhechkov, L., Heine, T., Langer, T., Gerke, B., Pöttgen, R., Wagler, J. Chem. Commun. 2014, 50, 5382–5384; https://doi.org/10.1039/c3cc47912a.Search in Google Scholar PubMed

25. Daniels, C. L., Knobeloch, M., Yox, P., Adamson, M. A. S., Chen, Y., Dorn, R. W., Wu, H., Zhou, G., Fan, H., Rossini, A. J., Vela, J. Organometallics 2020, 39, 1092–1104; https://doi.org/10.1021/acs.organomet.9b00803.Search in Google Scholar

26. Martincová, J., Dostal, L., Růžička, A., Herres-Pawlis, S., Jambor, R. Z. Anorg. Allg. Chem. 2012, 638, 1672–1675; https://doi.org/10.1002/zaac.201200064.Search in Google Scholar

27. Martincová, J., Dostal, L., Herres-Pawlis, S., Růžička, A., Jambor, R. Chem. Eur. J. 2011, 17, 7423–7427; https://doi.org/10.1002/chem.201100417.Search in Google Scholar PubMed

28. Gericke, R., Wagler, J. Inorg. Chem. 2020, 59, 6359–6375; https://doi.org/10.1021/acs.inorgchem.0c00466.Search in Google Scholar PubMed

29. Ehrlich, L., Gericke, R., Brendler, E., Wagler, J. Inorganics 2018, 6, 1–19. 119; https://doi.org/10.3390/inorganics6040119.Search in Google Scholar

30. Bozopoulos, A. P., Kokkou, S. C., Rentzeperis, P. J. Acta Crystallogr. 1984, C40, 944–946; https://doi.org/10.1107/s0108270184006351.Search in Google Scholar

31. Block, E., Ofori-Okai, G., Kang, H., Wu, J., Zubierta, J. Inorg. Chem. 1991, 30, 4784–4788; https://doi.org/10.1021/ic00025a020.Search in Google Scholar

32. Preut, H., Huber, F., Hengstmann, K.-H. Acta Crystallogr. 1988, C44, 468–469; https://doi.org/10.1107/s0108270187011351.Search in Google Scholar

33. Haikou, M. N., Tsivgoulis, G. M., Ioannou, P. V. Z. Anorg. Allg. Chem. 2004, 630, 1084–1089; https://doi.org/10.1002/zaac.200400082.Search in Google Scholar

34. Ioannou, P. V. Main Group Met. Chem. 2013, 12, 125–138; https://doi.org/10.3233/mgc-130095.Search in Google Scholar

35. Buttrus, N. H., Jasim, Z. U., Al-Allaf, T. A. K. J. J. J. Appl. Sci. 2005, 7, 92–99.Search in Google Scholar

36. Haikou, M. N., Ioannou, P. V. Phosphorus Sulfur 2006, 181, 363–376; https://doi.org/10.1080/104265091000589.Search in Google Scholar

37. Haikou, M. N., Ioannou, P. V. Phosphorus Sulfur 2006, 181, 921–929; https://doi.org/10.1080/104265091000589.Search in Google Scholar

38. Zhang, X., Lu, J., Ren, X., Du, Y., Zheng, Y., Ioannou, P. V., Holmgren, A. Free Radical Biol. Med. 2015, 89, 192–200; https://doi.org/10.1016/j.freeradbiomed.2015.07.010.Search in Google Scholar PubMed

39. The observation of corresponding molecular structures for the compounds Pn(pyS)3 (Pn = P, As, Sb; period 3–5 elements) contrasts with the related compounds in group 13 of the periodic table [M13(pyS)3; M13 = Al, Ga, In]. Whereas for the gallium and indium compounds the fac isomers of the octahedral complexes are formed (see ref. [8–10]), we found the Al(pyS)3 molecule to adopt the mer configuration in the crystal structure of its toluene solvate (see Supporting Information for details).Search in Google Scholar

40. Burford, N., Royan, B. W., White, P. S. Acta Crystallogr. 1990, C46, 274–276; https://doi.org/10.1107/s010827018900630x.Search in Google Scholar

41. Pappalardo, G. C., Chakravorty, R., Irgolic, K. J., Meyers, E. A. Acta Crystallogr. 1983, C39, 1618–1620; https://doi.org/10.1107/s010827018300949x.Search in Google Scholar

42. Peters, M., Saak, W., Pohl, S. Z. Anorg. Allg. Chem. 1996, 622, 2119–2123; https://doi.org/10.1002/zaac.19966221221.Search in Google Scholar

43. Batsanov, S. S. Inorg. Mater. 2001, 37, 871–885; https://doi.org/10.1023/a:1011625728803.10.1023/A:1011625728803Search in Google Scholar

44. Ozturk, I. I., Banti, C. N., Hadjikakou, S. K., Panagiotou, N., Tasiopoulos, A. J. Inorg. Chim. Acta 2019, 497, 119094; https://doi.org/10.1016/j.ica.2019.119094.Search in Google Scholar

45. Herzog, U., Rheinwald, G. J. Organomet. Chem. 2002, 648, 220–225; https://doi.org/10.1016/s0022-328x(01)01450-4.Search in Google Scholar

46. Adams, E. A., Kolis, J. W., Pennington, W. T. Acta Crystallogr. 1990, C46, 917–919; https://doi.org/10.1107/s0108270189012862.Search in Google Scholar

47. Hantzsch, A., Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20, 3118–3132; https://doi.org/10.1002/cber.188702002200.Search in Google Scholar

48. Widman, O. J. Prakt. Chem. 1888, 38, 185–201; https://doi.org/10.1002/prac.18880380114.Search in Google Scholar

49. Moedritzer, K., Maier, L., Groenweghe, L. C. D. J. Chem. Eng. Data 1962, 7, 307–310; https://doi.org/10.1021/je60013a043.Search in Google Scholar

50. Afonin, A. V., Pavlov, D. V., Albanov, A. I., Tarasova, O. A., Nedolya, N. A. Magn. Reson. Chem. 2013, 51, 414–423; https://doi.org/10.1002/mrc.3967.Search in Google Scholar PubMed

51. We have already reported on the spectrum of Sb(pyS)3 in ref. [21]. Also, spectra of SbPh3 were already published (see ref. [52, 53]). However, we have recorded the spectrum of SbPh3 again together with the other Sb compounds using the same equipment, source and same procedure for data fitting in order to exclude systematic errors.Search in Google Scholar

52. Brill, T. B., Parris, G. E., Long, G. G., Bowen, L. H. Inorg. Chem. 1973, 12, 1888–1891; https://doi.org/10.1021/ic50126a038.Search in Google Scholar

53. Long, G. G., Stevens, J. G., Tullbane, R. J., Bowen, L. H. J. Am. Chem. Soc. 1970, 92, 4230–4235; https://doi.org/10.1021/ja00717a017.Search in Google Scholar

54. Bancroft, G. M., Platt, R. H. Adv. Inorg. Chem. Radiochem. 1972, 15, 59–258; https://doi.org/10.1016/s0065-2792(08)60017-5.Search in Google Scholar

55. Brown, D. E., Johnson, C. E., Grandjean, F., Hermann, R. P., Kauzlarich, S. M., Holm, A. P., Long, G. J. Inorg. Chem. 2004, 43, 1229–1234; https://doi.org/10.1021/ic035172m.Search in Google Scholar PubMed

56. Stoe & Cie. XShape; Stoe & Cie: Darmstadt, Germany, 2002.Search in Google Scholar

57. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

58. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

59. Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Search in Google Scholar

60. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., et al. Gaussian 09 (revision E.01); Gaussian, Inc.: Wallingford, CT (USA), 2016.Search in Google Scholar

61. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Landis, C. R., Weinhold, F. NBO (version 6.0); University of Wisconsin: Madison, WI (USA), 2013.Search in Google Scholar

62. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0171).


Received: 2020-10-14
Accepted: 2020-12-12
Published Online: 2021-01-15
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0171/html
Scroll to top button