Skip to main content
Log in

Cerebral hemodynamics in obesity: relationship with sex, age, and adipokines in a cohort-based study

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Overweight and obesity are well-known independent risk factors for stroke in the general population although uncertain in the case of the elderly, according to the obesity paradox. Little is known about underlying mechanisms. Our study aims to assess whether there is a relationship between excess body weight (measured as waist circumference) and poor cerebral hemodynamics (measured by transcranial Doppler parameters: basal, mean flow velocity (MFV), and dynamic, cerebrovascular reserve (CvR) in the right middle cerebral artery (RMCA)). A possible underlying molecular mechanism was analyzed via plasma leptin, adiponectin, TNF-α, IL-6, VCAM, and CRP levels. One hundred sixty-five subjects were included. Bivariate and multivariate regression showed a linear correlation between waist circumference and hemodynamics in RMCA, with clear gender effects: MFV (global NS, men β − 0.26 p < 0.01; women NS), CvR (global: β − 0.15 p < 0.01; men: β − 0.29 p < 0.01, women: β − 0.19 p < 0.09). For subjects above 65 years, there is no significant relationship between AbP and cerebral hemodynamics. In multivariate regression models, only leptin correlated independently with MFV in RMCA (β 7.24, p < 0.01) and CvR (β − 0.30, p < 0.01). In both cases, waist circumference remains significantly related to both parameters. There is an inverse linear correlation between excess body weight and cerebral hemodynamics, independent of other vascular risk factors and clearly influenced by gender. This relation disappears in the elderly population. Leptin might play a role in this relationship. Nevertheless, there must be another associated mechanism, not identified in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. GBD 2015 Obesity Collaborators A, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  Google Scholar 

  2. Guh DP, Zhang W, Bansback N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. https://doi.org/10.1186/1471-2458-9-88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. WHO | 10 facts on obesity. https://www.who.int/features/factfiles/obesity/en/

  4. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26- year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77. https://doi.org/10.1161/01.CIR.67.5.968.

    Article  CAS  PubMed  Google Scholar 

  5. Rexrode KM. Abdominal adiposity and coronary heart disease in women. JAMA J Am Med Assoc. 1998;280:1843–8. https://doi.org/10.1001/jama.280.21.1843.

    Article  CAS  Google Scholar 

  6. Bosello O, Vanzo A. Obesity paradox and aging. Eat Weight Disord. 2019. https://doi.org/10.1007/s40519-019-00815-4.

  7. Chang VW, Langa KM, Weir D, Iwashyna TJ. The obesity paradox and incident cardiovascular disease: a population-based study. PLoS One. 2017;12:e0188636. https://doi.org/10.1371/journal.pone.0188636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62(2):253–60. https://doi.org/10.1111/JGS.12652.

    Article  PubMed  Google Scholar 

  9. Sanada K, Chen R, Willcox B, et al. Association of sarcopenic obesity predicted by anthropometric measurements and 24-y all-cause mortality in elderly men: the Kuakini Honolulu Heart Program. Nutrition. 2018;46:97–102. https://doi.org/10.1016/J.NUT.2017.09.003.

    Article  PubMed  Google Scholar 

  10. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ. Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr. 2014;68(9):1001–7. https://doi.org/10.1038/EJCN.2014.117.

    Article  CAS  PubMed  Google Scholar 

  11. Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9. https://doi.org/10.1056/NEJMoa1000367.

    Article  CAS  PubMed  Google Scholar 

  12. Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359:2105–20. https://doi.org/10.1056/NEJMoa0801891.

    Article  CAS  PubMed  Google Scholar 

  13. Strazzullo P, D’Elia L, Cairella G, et al. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke. 2010;41(5):e418–26. https://doi.org/10.1161/STROKEAHA.109.576967.

  14. Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens Res. 2012;35:4–16. https://doi.org/10.1038/hr.2011.173.

    Article  CAS  PubMed  Google Scholar 

  15. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52:2882–7.

    Article  CAS  Google Scholar 

  16. Bastard J-P, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.

    CAS  PubMed  Google Scholar 

  17. Beltowski J, Wojcicka G, Gorny D, Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol. 2000;51:883–96.

    CAS  PubMed  Google Scholar 

  18. Fantuzzi G, Theodore M, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol. 2007;27:996–1003. ATVBAHA.106.131755 [pii]. https://doi.org/10.1161/ATVBAHA.106.131755.

    Article  CAS  PubMed  Google Scholar 

  19. Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: gaps and open questions. Nutr Metab Cardiovasc Dis. 2017;27(5):379–95. https://doi.org/10.1016/J.NUMECD.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  20. Dorrance AM, Matin N, Pires PW. The effects of obesity on the cerebral vasculature. Curr Vasc Pharmacol. 2014;12:462–72.

    Article  CAS  Google Scholar 

  21. Wu F, Beard DA, Frisbee JC. Computational analyses of intravascular tracer washout reveal altered capillary-level flow distributions in obese Zucker rats. J Physiol. 2011;589:4527–43. https://doi.org/10.1113/jphysiol.2011.209775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Selim M, Jones R, Novak P, et al. The effects of body mass index on cerebral blood flow velocity. Clin Auton Res. 2008;18:331–8. https://doi.org/10.1007/s10286-008-0490-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Willeumier KC, Taylor DV, Amen DG, et al. Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity (Silver Spring). 2011;19:1095–7. https://doi.org/10.1038/oby.2011.16.

    Article  Google Scholar 

  24. Ringelstein EB, Sievers C, Ecker S, et al. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke. 1998;19:963–9.

    Article  Google Scholar 

  25. Jiménez-Caballero PE, Segura T, Jimńez-Caballero PE, T. S. Valores de normalidad de la reactividad vasomotora cerebral mediante el test de apnea voluntaria. Rev Neurol. 2006;43:598–602.

    PubMed  Google Scholar 

  26. Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96. S0140–6736(09)60318–4 [pii]. https://doi.org/10.1016/S0140-6736(09)60318-4.

    Article  PubMed  Google Scholar 

  27. Kurth T, Gaziano JM, Berger K, et al. Body mass index and the risk of stroke in men. Arch Intern Med. 2002;162:2557–62. https://doi.org/10.1001/archinte.162.22.2557.

    Article  PubMed  Google Scholar 

  28. Suk S-HH, Sacco RL, Boden-Albala B, et al. Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study. Stroke. 2003;34:1586–92. 01.STR.0000075294.98582.2F [pii]. https://doi.org/10.1161/01.STR.0000075294.98582.2F.

    Article  PubMed  Google Scholar 

  29. Hu G, Tuomilehto J, Silventoinen K, et al. Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch Intern Med. 2007;167:1420–7. 167/13/1420 [pii]. https://doi.org/10.1001/archinte.167.13.1420.

    Article  PubMed  Google Scholar 

  30. Pires A, Castela E, Sena C, Seiça R. Obesity: paradigm of endothelial dysfunction in paediatric age groups. Acta Medica Port. 2015;28:233–9.

    Article  Google Scholar 

  31. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    CAS  PubMed  Google Scholar 

  32. Osmond JM, D. MJ, Brian D, et al. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension. 2009;53:381–6. https://doi.org/10.1161/HYPERTENSIONAHA.108.124149.

    Article  CAS  PubMed  Google Scholar 

  33. Deutsch C, Portik-Dobos V, Smith AD, et al. Diet-induced obesity causes cerebral vessel remodeling and increases the damage caused by ischemic stroke. Microvasc Res. 2009;78:100–6. https://doi.org/10.1016/j.mvr.2009.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weisbrod RM, Shiang T, Al Sayah L, et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension. 2013;62:1105–10. https://doi.org/10.1161/hypertensionaha.113.01744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ciccone M, Vettor R, Pannacciulli N, et al. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord. 2001;25:805–10. https://doi.org/10.1038/sj.ijo.0801623.

    Article  CAS  PubMed  Google Scholar 

  36. Molica F, Morel S, Kwak BR, et al. Adipokines at the crossroad between obesity and cardiovascular disease. Thromb Haemost. 2015;113:553–66. https://doi.org/10.1160/th14-06-0513.

    Article  PubMed  Google Scholar 

  37. Festa A, D’Agostino RJ, Williams K, et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord. 2001;25:1407–15. https://doi.org/10.1038/sj.ijo.0801792.

    Article  CAS  PubMed  Google Scholar 

  38. Chudek J, Wiecek A. Adipose tissue, inflammation and endothelial dysfunction. Pharmacol Rep. 2006;58(Suppl):81–8.

    PubMed  Google Scholar 

  39. Rajsheker S, David M, Al B, et al. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin. 2010;10:191–6. https://doi.org/10.1016/j.coph.2009.11.005.Crosstalk.

    Article  CAS  Google Scholar 

  40. Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14:219–27. https://doi.org/10.1007/s11154-013-9252-x.

    Article  CAS  PubMed  Google Scholar 

  41. Szasz T, Webb RC, Clinton WR. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012;122:1–12. https://doi.org/10.1042/CS20110151.

    Article  CAS  Google Scholar 

  42. Cheranov SY, Jaggar JH. TNF-alpha dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation. Am J Physiol Cell Physiol. 2006;290:C964–71. https://doi.org/10.1152/ajpcell.00499.2005.

    Article  CAS  PubMed  Google Scholar 

  43. Henry RMA, J. KP, M. DJ, et al. Carotid arterial remodeling: a maladaptive phenomenon in type 2 diabetes but not in impaired glucose metabolism: the Hoorn study. Stroke. 2004;35:671–6. https://doi.org/10.1161/01.STR.0000115752.58601.0B.

    Article  PubMed  Google Scholar 

  44. Institoris A, Lenti L, Domoki F, et al. Cerebral microcirculatory responses of insulin-resistant rats are preserved to physiological and pharmacological stimuli. Microcirculation. 2012;19:749–56. https://doi.org/10.1111/j.1549-8719.2012.00213.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siró P, Molnár C, Katona É, et al. Carotid intima-media thickness and cerebrovascular reactivity in long-term type 1 diabetes mellitus. J Clin Ultrasound. 2009;37:451–6. https://doi.org/10.1002/jcu.20617.

    Article  PubMed  Google Scholar 

  46. Schunkert H, Susanne M, Jens H, et al. The correlation between waist circumference and ESC cardiovascular risk score: data from the German metabolic and cardiovascular risk project (GEMCAS). Clin Res Cardiol. 2008;97:827–35. https://doi.org/10.1007/s00392-008-0694-1.

    Article  PubMed  Google Scholar 

  47. Efstathiou SP, Tsioulos DI, Tsiakou AG, et al. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke. 2005;36:1915–9. https://doi.org/10.1161/01.STR.0000177874.29849.f0.

    Article  CAS  PubMed  Google Scholar 

  48. Bloemer J, Pinky PD, Govindarajulu M, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018. https://doi.org/10.1155/2018/4593530.

  49. Gorgui J, Gasbarrino K, Georgakis MK, et al. Circulating adiponectin levels in relation to carotid atherosclerotic plaque presence, ischemic stroke risk, and mortality: a systematic review and meta-analyses. Metabolism. 2017;69:51–66. https://doi.org/10.1016/j.metabol.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  50. Kohara K, Ochi M, Okada Y, et al. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage. Atherosclerosis. 2014;235:424–9. https://doi.org/10.1016/j.atherosclerosis.2014.05.940.

    Article  CAS  PubMed  Google Scholar 

  51. Korda M, Kubant R, Patton S, Malinski T. Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol. 2008;295:H1514–21. https://doi.org/10.1152/ajpheart.00479.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aizawa-Abe M, Ogawa Y, Masuzaki H, et al. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest. 2000;105:1243–52. https://doi.org/10.1172/JCI8341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2005;189:47–60. S0021–9150(06)00128–6 [pii]. https://doi.org/10.1016/j.atherosclerosis.2006.03.003.

    Article  CAS  Google Scholar 

  54. Hamner JW, Tan CO, Ozan TC. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 2014;45:1771–7. https://doi.org/10.1161/strokeaha.114.005293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnes MJ, McDougal DH. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure. Front Neurosci. 2014;8:232. https://doi.org/10.3389/fnins.2014.00232.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hay-Schmidt A, Helboe L, Larsen PJ. Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat. Neuroendocrinology. 2001;73:215–26 54638.

    Article  CAS  Google Scholar 

  57. Singhal A, Farooqi IS, Cole TJ, et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation. 2002;106:1919–24.

    Article  CAS  Google Scholar 

  58. Schäfer K, Martin H, Colin G, et al. Leptin promotes vascular remodeling and neointimal growth in mice. Arterioscler Thromb Vasc Biol. 2004;24:112–7. https://doi.org/10.1161/01.ATV.0000105904.02142.e7.

    Article  CAS  PubMed  Google Scholar 

  59. Schroeter MR, Eschholz N, Herzberg S, et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation. Arter Thromb Vasc Biol. 2013;33:980–7. https://doi.org/10.1161/atvbaha.113.301393.

    Article  CAS  Google Scholar 

  60. Shibata R, Ouchi N, Ohashi K, Murohara T. The role of adipokines in cardiovascular disease. J Cardiol. 2017;70:329–34. https://doi.org/10.1016/j.jjcc.2017.02.006.

    Article  PubMed  Google Scholar 

  61. Li F, Li Y, Duan Y, et al. Myokines and adipokines: involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017;33:73–82. https://doi.org/10.1016/j.cytogfr.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  62. Chung HS, Choi KM. Adipokines and myokines: a pivotal role in metabolic and cardiovascular disorders. Curr Med Chem. 2018;25:2401–15. https://doi.org/10.2174/0929867325666171205144627.

    Article  CAS  PubMed  Google Scholar 

  63. Jiménez Caballero PE, Coloma Navarro R, Ayo Martín O, Segura MT. Cerebral hemodynamic changes at basilar artery in obstructive sleep apnea syndrome after continuous positive airway pressure treatment. J Stroke Cerebrovasc Dis. 2012;22:1–6. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.07.011.

    Article  Google Scholar 

  64. Jiménez Caballero PE, Coloma Navarro R, Segura Martín T, Ayo MO. Cerebral hemodynamic changes at basilar artery in patients with obstructive sleep apnea syndrome. A case-control study. Acta Neurol Scand. 2014;129:80–4. https://doi.org/10.1111/ane.12156.

    Article  PubMed  Google Scholar 

  65. Segura T, Serena J, Plaza I, et al. Normal values for transcranial doppler studies in our medium. Neurologia. 1999;14:437–43.

    CAS  PubMed  Google Scholar 

  66. Alosco ML, Spitznagel MB, Raz N, et al. Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra. 2012;2:88–98. https://doi.org/10.1159/000343222.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferreira I, Beijers HJ, Schouten F, et al. Clustering of metabolic syndrome traits is associated with maladaptive carotid remodeling and stiffening: a 6-year longitudinal study. Hypertension. 2012;60:542–9. https://doi.org/10.1161/HYPERTENSIONAHA.112.194738.

    Article  CAS  PubMed  Google Scholar 

  68. Iglesias MJ, Eiras S, Pineiro R, et al. Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue. Findings in patients undergoing cardiac surgery. Rev Esp Cardiol. 2006;59:1252–60.

    Article  Google Scholar 

  69. Sparks LM, Pasarica M, Sereda O, et al. Effect of adipose tissue on the sexual dimorphism in metabolic flexibility. Metabolism. 2009;58:1564–71. https://doi.org/10.1016/j.metabol.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  70. Licinio J, Negrão AB, Mantzoros C, et al. Sex differences in circulating human leptin pulse amplitude: clinical implications. J Clin Endocrinol Metab. 1998;83:4140–7. https://doi.org/10.1210/jcem.83.11.5291.

    Article  CAS  PubMed  Google Scholar 

  71. Luque-Ramírez M, Martínez-García MÁ, Montes-Nieto R, et al. Sexual dimorphism in adipose tissue function as evidenced by circulating adipokine concentrations in the fasting state and after an oral glucose challenge. Hum Reprod. 2013;28:1908–18. https://doi.org/10.1093/humrep/det097.

    Article  CAS  PubMed  Google Scholar 

  72. Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35(1):243–52. https://doi.org/10.1161/ATVBAHA.114.304798.

    Article  CAS  PubMed  Google Scholar 

  73. Montero D, Roberts CK, Vinet A, et al. Effect of aerobic exercise training on arterial stiffness in obese populations : a systematic review and meta-analysis. Sports Med. 2014;44(6):833–43. https://doi.org/10.1007/s40279-014-0165-y.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. J Ahmad BSc (Hons) MBBS Ph.D. for their expert advice in the translation process.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: official grant from the regional Health Service of Castilla-La Mancha, Spain (Exp. Number PI 2006/39-2008).

Author information

Authors and Affiliations

Authors

Contributions

OAM participated in the design of the project, recruiting process, physical exam of the subjects, ultrasonographic studies, and statistical analysis and wrote the article.

MGH and IGF participated in the design of the project, recruiting process, measuring vital signs, taking blood samples, and helping in ultrasonographic procedures and revised the text of the article.

CAF participated in the design of the project and laboratory analysis and wrote the article.

CL, JJAM, and FB participated in the design of the project and recruiting process and wrote the article.

JGG, FHF, and TM participated in the design of the project, recruiting process, and statistical analysis and wrote the article.

Corresponding author

Correspondence to Oscar Ayo-Martin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Complejo Hospitalario Universitario de Albacete as well as by the Research Commission of the Centre, according to the Helsinki declaration. Written informed consent was obtained from each volunteer prior to participation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NEW & NOTEWORTHY

This study provides evidence of the relationship between excess weight and inferior cerebral hemodynamics in humans, in terms of lower arterial flow velocity and cerebrovascular reserve. The relationship is linear, progressing from overweight to any grade of obesity. In subjects older than 65 years, no association between abdominal perimeter and cerebral hemodynamics was found. Sexual dimorphism is evident, with worse hemodynamic values in males compared to females for the same weight excess. Molecular analysis suggests leptin plays a key role, possibly by facilitating dynamic or structural (remodeling) changes in the arterioles.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayo-Martin, O., García-García, J., Hernández-Fernández, F. et al. Cerebral hemodynamics in obesity: relationship with sex, age, and adipokines in a cohort-based study. GeroScience 43, 1465–1479 (2021). https://doi.org/10.1007/s11357-020-00313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00313-x

Keywords

Navigation