Skip to main content
Log in

Genomic insight into a novel actinobacterium, Actinomadura rubrisoli sp. nov., reveals high potential for bioactive metabolites

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Isolation of novel actinobacteria from unexplored habitats as potential sources of novel drug leads has utmost importance. During the course of screening arid soil samples for novel actinobacteria, strain H3C3T was isolated from Malatya, Turkey and its taxonomic position was revealed by a genome-based polyphasic approach. Pairwise sequence comparison of the 16S rRNA gene showed that the strain is closely related to Actinomadura fibrosa JCM 9371T with sequence identity level of 99.0%. Comparative genome analyses based on digital DNA-DNA hybridization and average nucleotide identity indicated that strain H3C3T represents a novel species within the genus Actinomadura. The strain has typical characteristics of the genus Actinomadura, i.e. meso-diaminopimelic acid as diagnostic amino acid; galactose, glucose, madurose and ribose as whole-cell sugars. Major menaquinones detected were MK-9(H6), MK-9(H8) and polar lipids were diphosphatidylglycerol, phosphatidylinositol, glycophospholipid and unknown phospholipid and lipids. Its genome size is approximately 10.2 Mb with G+C content of 71.6%. Further genomic analyses of strain H3C3T indicated its high potential for novel biosynthetic gene clusters coding for various chemical structures. On the basis of phenotypic and phylogenetic analyses, strain H3C3T represents a novel species of the genus Actinomadura, for which Actinomadura rubrisoli sp. nov. is proposed, and it holds high promise for novel biosynthetic metabolites of value to biopharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alanjary M et al (2017) The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 45:W42–W48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin DH, Abolmaaty A, Borsetto C, Tolba S, Abdallah NA, Wellington EM (2019) In silico genomic mining reveals unexplored bioactive potential of rare actinobacteria isolated from Egyptian soil. Bull Natl Res Cent 43:78

    Article  Google Scholar 

  • Ay H (2020) Nonomuraea terrae sp. nov., isolated from arid soil. Arch Microbiol 202:2197–2205

    Article  CAS  PubMed  Google Scholar 

  • Ay H et al (2017) Actinomadura alkaliterrae sp. nov., isolated from an alkaline soil. Antonie Van Leeuwenhoek 110:787–794

    Article  CAS  PubMed  Google Scholar 

  • Ay H, Nouioui I, Klenk H-P, Cetin D, Igual JM, Sahin N, Isik K (2020) Genome-based classification of Micromonospora craterilacus sp. nov., a novel actinobacterium isolated from Nemrut Lake. Antonie van Leeuwenhoek:1–11

  • Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Babadi ZK, Sudarman E, Ebrahimipour GH, Primahana G, Stadler M, Wink J (2020) Structurally diverse metabolites from the rare actinobacterium Saccharothrix xinjiangensis. J Antibiot 73:48–55

    Article  CAS  Google Scholar 

  • Belknap KC, Park CJ, Barth BM, Andam CP (2020) Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 10:2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1

    Article  Google Scholar 

  • Blin K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brettin T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchmann A et al (2016) High-quality draft genome sequence of the actinobacterium Nocardia terpenica IFM 0406, producer of the immunosuppressant brasilicardins, using illumina and PacBio technologies. Genome Announc 4:e01391-e1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins MD (1985) 11 analysis of isoprenoid quinones. In: Bergan T (ed) Methods in microbiology, vol 18. Elsevier, Amsterdam, pp 329–366

    Google Scholar 

  • Cortés-Albayay C, Jarmusch SA, Trusch F, Ebel R, Andrews BA, Jaspars M, Asenjo JA (2020) Downsizing class II lasso peptides: genome mining-guided isolation of huascopeptin containing the first Gly1–Asp7 macrocycle. J Org Chem 85:1661–1667

    Article  PubMed  Google Scholar 

  • dos Santos DL et al (2017) Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. PLoS ONE 12:e0173689

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1981) The old REH theory remains unsatisfactory and the new REH theory is problematical—a reply to holmquist and jukes. J Mol Evol 18:60–67

    Article  CAS  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Iida T, Fukuda T, Miyanaga S, Sakurai H, Saiki I, Miyanouchi K (2012) Catechoserine, a new catecholate-type inhibitor of tumor cell invasion from Streptomyces sp. J Antibiot 65:207–209

    Article  CAS  Google Scholar 

  • Jarmusch SA et al (2020) Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation. J Antibiot 73:772–779

    Article  CAS  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kaweewan I, Komaki H, Hemmi H, Kodani S (2018) Isolation and structure determination of a new thiopeptide globimycin from Streptomyces globisporus subsp. globisporus based on genome mining. Tetrahedron Lett 59:409–414

    Article  CAS  Google Scholar 

  • Kimura T et al (2016) Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306. J Antibiot 69:818–824

    Article  CAS  Google Scholar 

  • Komaki H et al (2020) Draft genome sequence of Actinomadura sp. K4S16 and elucidation of the nonthmicin biosynthetic pathway. J Genomics 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 682–724

    Chapter  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Küster E, Williams S (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929

    Article  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 20:435–443

    CAS  Google Scholar 

  • Lee SR et al (2018) Natalenamides A-C, cyclic tripeptides from the termite-associated Actinomadura sp. RB99. Molecules 23:3003

    Article  PubMed Central  Google Scholar 

  • Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipun K, Chantavorakit T, Mingma R, Duangmal K (2020) Streptomyces acidicola sp. nov., isolated from a peat swamp forest in Thailand. J Antibiot 73:435–440

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278

    Article  CAS  PubMed  Google Scholar 

  • Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins AC: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot 56:622–629

    Article  CAS  Google Scholar 

  • Mazzei E, Iorio M, Maffioli SI, Sosio M, Donadio S (2012) Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot 65:267–269

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Mertz FP, Yao RC (1990) Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Evol Microbiol 40:28–33

    CAS  Google Scholar 

  • Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N (2020) ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res 48:W546–W552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304:3–13

    Article  PubMed  Google Scholar 

  • Niu S et al (2011) Lobophorins E and F, new spirotetronate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127. J Antibiot 64:711–716

    Article  CAS  Google Scholar 

  • Passari AK, Chandra P, Mishra VK, Leo VV, Gupta VK, Kumar B, Singh BP (2016) Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Res Microbiol 167:692–705

    Article  CAS  PubMed  Google Scholar 

  • Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar Drugs 8:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorinmohammad N, Bagheban-Shemirani R, Hamedi J (2019) Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie Van Leeuwenhoek 112:1477–1499

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Román-Ponce B et al (2020) Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitiensis sp. nov., and emended description of the genus Salinispora. Int J Syst Evol Microbiol 70:4668–4682

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santos-Aberturas J et al (2019) Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 47:4624–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–204

    Google Scholar 

  • Saygin H et al (2020) Polyphasic classification of Nonomuraea strains isolated from the Karakum Desert and description of Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov. Int J Syst Evol Microbiol 70:636–647

    Article  CAS  PubMed  Google Scholar 

  • Shin B, Kim B-Y, Cho E, Oh K-B, Shin J, Goodfellow M, Oh D-C (2016) Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191. J Nat Prod 79:1886–1890

    Article  CAS  PubMed  Google Scholar 

  • Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Simmons L, Kaufmann K, Garcia R, Schwär G, Huch V, Müller R (2011) Bendigoles D-F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg Med Chem 19:6570–6575

    Article  CAS  PubMed  Google Scholar 

  • Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA (2017) PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res 45:W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Trujillo ME, Goodfellow M (2015) Actinomadura Bergey's Manual of Systematics of Archaea and Bacteria, pp 1–32

  • van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP (2020) Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol1–13

  • Wattam AR et al (2016) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayne L et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weyland H (1969) Actinomycetes in North Sea and Atlantic ocean sediments. Nature 223:858–858

    Article  CAS  PubMed  Google Scholar 

  • Wieme AD, Gosselé F, Snauwaert C, Cleenwerck I, Vandamme P (2019) Actinomadura roseirufa sp. nov., producer of semduramicin, a polyether ionophore. Int J Syst Evol Microbiol 69:3068–3073

    Article  CAS  PubMed  Google Scholar 

  • Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P, Sackin M (1983) Numerical classification of Streptomyces and related genera. Microbiology 129:1743–1813

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Genome sequencing was conducted by MicrobesNG (http://www.microbesng.uk) which is supported by the BBSRC (Grant No. BB/L024209/1).

Author information

Authors and Affiliations

Authors

Contributions

The author designed the work and conducted all analyses.

Corresponding author

Correspondence to Hilal Ay.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by the author. The formal consent is not required in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the supplementary information.

Supplementary information 1 (DOCX 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, H. Genomic insight into a novel actinobacterium, Actinomadura rubrisoli sp. nov., reveals high potential for bioactive metabolites. Antonie van Leeuwenhoek 114, 195–208 (2021). https://doi.org/10.1007/s10482-020-01511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01511-5

Keywords

Navigation