Skip to main content
Log in

Induction of Room Temperature Ferromagnetism in N-Doped Yttrium Oxide: Ab Initio Calculation

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

To explore the diluted magnetic semiconductors for spintronic applications, we have studied N doped Y2O3 employing density functional theory (DFT). It has been observed that the non-magnetic pristine Y2O3 attains 1.0 \({{\mu }_{{\text{B}}}}\) magnetic moment for each defect for single N impurity and the induced ferromagnetic coupling range is sufficient to withstand room temperature ferromagnetism as estimated Curie temperature is 791 K. The partial density of states reveals that it is the N 2p orbital along with nearest Y 4d orbital that mainly contributes to induced magnetism. Moreover, the computed relative formation energy indicates that O substitute defect is synthetically more appreciative and dominant over interstitial defect. The charged defect analysis also predicts that the system remains ferromagnetic even with most probable charge defect state. All these supporting outcomes stipulate that N doped Y2O3 could be customized as a diluted magnetic semiconductor that could be fruitfully applied as a spintronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science (Washington, DC, U. S.) 287, 1019 (2000).

    Article  ADS  Google Scholar 

  2. H. Y. Xu, Y. C. Liu, Y. X. Liu, C. S. Zhu, C. L. Shao, and R. Mu, Appl. Phys. Lett. 88, 242502 (2006).

    Article  ADS  Google Scholar 

  3. J. H. Park, M. G. Kim, H. M. Jang, and S. W. Ryu, Appl. Phys. Lett. 84, 1338 (2004).

    Article  ADS  Google Scholar 

  4. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).

    Article  ADS  Google Scholar 

  5. A. M. Stoneham, A. P. Pathak, and R. H. Bartram, J. Phys. C 9, 73 (1976).

    ADS  Google Scholar 

  6. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).

    Article  ADS  Google Scholar 

  7. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).

    Article  ADS  Google Scholar 

  8. K. Kenmochi, M. Seike, K. Sato, A. Yanase, and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 43, L934 (2004).

    Article  ADS  Google Scholar 

  9. Y. J. Zhao, T. Shishidou, and A. J. Freeman, Phys. Rev. Lett. 90, 047204 (2003).

    Article  ADS  Google Scholar 

  10. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

    Article  ADS  Google Scholar 

  11. P. M. Krstajić, F. M. Peeter, V. A. Ivanov, V. Fleuro, and K. Kikoin, Phys. Rev. B 70, 195215 (2004).

    Article  ADS  Google Scholar 

  12. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65, 235205 (2002).

    Article  ADS  Google Scholar 

  13. J. B. Yi, C. C. Lim, G. Z. Xing, et al., Phys. Rev. Lett. 104, 137201 (2010).

    Article  ADS  Google Scholar 

  14. S. Chawla, K. Jayanthi, and R. K. Kotnala, Phys. Rev. B 79, 125204 (2009).

    Article  ADS  Google Scholar 

  15. L. X. Guan, J. G. Tao, C. H. A. Huan, J. L. Kuo, and L. Wang, J. Appl. Phys. 108, 093911 (2010).

    Article  ADS  Google Scholar 

  16. W. Zhou, L. Liu, and P. Wu, J. Magn. Magn. Mater. 321, 3356 (2009).

    Article  ADS  Google Scholar 

  17. B. Chakraborty and L. M. Ramaniah, J. Phys.: Condens. Matter 28, 336001 (2016).

    Google Scholar 

  18. I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H. J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Phys. Rev. Lett. 98, 137202 (2007).

    Article  ADS  Google Scholar 

  19. B. Chakraborty, P. K. Nandi, Y. Kawazoe, and L. M. Ramaniah, Phys. Rev. B 97, 184411 (2018).

    Article  ADS  Google Scholar 

  20. B. A. Davis, B. Chakraborty, N. Kalarikkal, and L. M. Ramaniah, J. Magn. Magn. Mater. 502, 166503 (2020).

    Article  Google Scholar 

  21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  26. G. Bouzerar, J. Kudrnovsky, L. Bergqvist, and P. Bruno, Phys. Rev. B 68, 081203 (2003).

    Article  ADS  Google Scholar 

  27. K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001).

    Article  ADS  Google Scholar 

  28. M. Luo, Y. E. Xu, and Y. X. Song, JETP Lett. 106, 258 (2017).

    Article  ADS  Google Scholar 

  29. M. Luo, Y. H. Shen, and T. L. Yin, JETP Lett. 104, 557 (2016).

    Article  ADS  Google Scholar 

  30. H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Research Center of Opto-Electrical Sensering of Shanghai University and by Gaoyuan Discipline of Shanghai-Environmental Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y.E., Chu, J.H. Induction of Room Temperature Ferromagnetism in N-Doped Yttrium Oxide: Ab Initio Calculation. Jetp Lett. 113, 120–126 (2021). https://doi.org/10.1134/S002136402102003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402102003X

Navigation