Skip to main content
Log in

Prediction of Sound Speed in Natural-Gas Mixtures Using the CP-PC-SAFT Equation of State

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

An equation of state based on the perturbed-chain statistical associating fluid theory (PC-SAFT) for estimates of sound speed in natural-gas mixtures is successfully applied in this work. Prediction results of the speed of sound for five binary and six multicomponent systems (dataset includes 1000 data points taken from literature) containing hydrocarbons, nitrogen, and carbon dioxide in a wide range of temperatures (250–415 K) and pressures (0.1–60 MPa) are presented. The fitting parameters of the binary interaction were not used in the calculations. The results of modeling for the speed of sound are shown to be in good agreement with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Meng, G., Jaworski, A.J., and White, N.M., Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers, Chem. Eng. Process., 2006, vol. 45, p. 383.

    Article  CAS  Google Scholar 

  2. Machefer, S. and Schnitzlein, K., Inline concentration monitoring of binary liquid mixtures in the presence of a dispersed gas phase with a modified speed of sound immersion probe, Chem. Eng. Technol., 2007, vol. 30, p. 1381.

    Article  CAS  Google Scholar 

  3. de Medeiros, J.L., de Oliveira Arinelli, L., and de Queiroz F. Araújo, O., Speed of sound of multiphase and multi-reactive equilibrium streams: A numerical approach for natural gas applications, J. Nat. Gas Sci. Eng., 2017, vol. 46, p. 222.

    Article  Google Scholar 

  4. Nichita, D.V., Khalid, P., and Broseta, D., Calculation of isentropic compressibility and sound velocity in two-phase fluids, Fluid Phase Equilib., 2010, vol. 291, p. 95.

    Article  CAS  Google Scholar 

  5. Castier, M., Ther modynamic speed of sound in multiphase systems, Fluid Phase Equilib., 2011, vol. 306, p. 204.

    Article  CAS  Google Scholar 

  6. Farzaneh-Gord, M. and Rahbari, H.R., Numerical procedures for natural gas accurate thermodynamic properties calculation, J. Eng. Thermophys., 2012, vol. 21, no. 4, pp. 213–234. https://doi.org/10.1134/S1810232812040017

    Article  CAS  Google Scholar 

  7. Farzaneh-Gord, M., Arabkoohsar, A., and Koury, R.N.N., Novel natural gas molecular weight calculator equation as a functional of only temperature, pressure and sound speed, J. Nat. Gas Sci. Eng., 2016, vol. 30, pp. 195–204. https://doi.org/10.1016/j.jngse.2016.02.018

    Article  Google Scholar 

  8. Farzaneh-Gord, M., Mohseni-Gharyehsafa, B., Toikka, A., and Zvereva, I., Sensitivity of natural gas flow measurement to AGA8 or GERG2008 equation of state utilization, J. Nat. Gas Sci. Eng., 2018, vol. 57, p. 305.

    Article  Google Scholar 

  9. Llovell, F., Peters, C.J., and Vega, L.F., Second-order thermodynamic derivative properties of selected mixtures by the soft-SAFT equation of state, Fluid Phase Equilib., 2006, vol. 248, p. 115.

    Article  CAS  Google Scholar 

  10. de Villiers, A.J., Schwarz, C.E., Burger, A.J., and Kontogeorgis, G.M., Evaluation of the PC-SAFT, SAFT and CPA equations of state in predicting derivative properties of selected non-polar and hydrogen-bonding compounds, Fluid Phase Equilib., 2013, vol. 338, p. 1.

    Article  CAS  Google Scholar 

  11. Chapman, W.G., Gubbins, K.E., Jackson, G., and Radosz, M., New reference equation of state for associating liquids, Ind. Eng. Chem. Res., 1990, vol. 29, p. 1709.

    Article  CAS  Google Scholar 

  12. Huang, S.H. and Radosz, M., Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 1990, vol. 29, p. 2284.

    Article  CAS  Google Scholar 

  13. Huang, S.H. and Radosz, M., Equation of state for small, large, polydisperse, and associating molecules: Extension to fluid mixtures, Ind. Eng. Chem. Res., 1991, vol. 30, p. 1994.

    Article  CAS  Google Scholar 

  14. Gross, J. and Sadowski, G., Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res., 2001, vol. 40, p. 1244.

    Article  CAS  Google Scholar 

  15. Barker, J.A. and Henderson, D., Perturbation theory and equation of state for fluids: The square-well potential, J. Chem. Phys., 1967, vol. 47, p. 2856.

    Article  CAS  Google Scholar 

  16. Polishuk, I., Lubarsky, H., and NguyenHuynh, D., Predicting phase behavior in aqueous systems without fitting binary parameters II: Gases and non-aromatic hydrocarbons, AIChE J., 2017, vol. 63, p. 5064.

    Article  CAS  Google Scholar 

  17. Polishuk, I., Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res., 2014, vol. 53, p. 14127.

    Article  CAS  Google Scholar 

  18. Polishuk, I., Katz, M., Levi, Y., and Lubarsky, H., Implementation of PC-SAFT and SAFT + Cubic for modeling thermodynamic properties of haloalkanes. I. 11 halomethanes, Fluid Phase Equilib., 2012, vol. 316, p. 66.

    Article  CAS  Google Scholar 

  19. Burgess, W.A., Tapriyal, D., Gamwo, I.K., Wu, Y., McHugh, M.A., and Enick, R.M., New group-contribution parameters for the calculation of PC-SAFT parameters for use at pressures to 276 MPa and temperatures to 533 K, Ind. Eng. Chem. Res., 2014, vol. 53, p. 2520.

    Article  CAS  Google Scholar 

  20. Lubarsky, H. and Polishuk, I., Implementation of the critical point-based revised PC-SAFT for modelling thermodynamic properties of aromatic and haloaromatic compounds, J. Supercrit. Fluids, 2015, vol. 97, p. 133.

    Article  CAS  Google Scholar 

  21. Liang, X., Maribo-Mogensen, B., Thomsen, K., Yan, W., and Kontogeorgis, G.M., Approach to improve speed of sound calculation within PC-SAFT framework, Ind. Eng. Chem. Res., 2012, vol. 51, p. 14903.

    Article  CAS  Google Scholar 

  22. Palma, A.M., Queimada, A.J., and Coutinho, J.A.P., Using a volume shift in perturbed-chain statistical associating fluid theory to improve the description of speed of sound and other derivative properties, Ind. Eng. Chem. Res., 2018, vol. 57, p. 11804.

    Article  CAS  Google Scholar 

  23. Melent’ev, V.V., Postnikov, E.B., and Polishuk, I., Experimental determination and modeling thermophysical properties of 1-chlorononane in a wide range of conditions: Is it possible to predict a contribution of chlorine atom?, Ind. Eng. Chem. Res., 2018, vol. 57, p. 5142.

    Article  Google Scholar 

  24. Prikhod’ko, I.V., Samarov, A.A., and Toikka, A.M., On application of PC–SAFT model for estimating the speed of sound in synthetic and natural oil-and-gas mixtures, Russ. J. Appl. Chem., 2019, vol. 92, no. 2, p. 262.

    Article  Google Scholar 

  25. NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Gaithersburg, Md.: National Institute of Standards and Technology (NIST), 2018. https://doi.org/10.18434/T4D303

  26. Ahmadi, P., Chapoy, A., and Tohidi, B., Density, speed of sound and derived thermodynamic properties of a synthetic natural gas, J. Nat. Gas Sci. Eng., 2017, vol. 40, pp. 249–266. https://doi.org/10.1016/j.jngse.2017.02.009

    Article  CAS  Google Scholar 

  27. Younglove, B.A., Frederick, N.V., and McCarty, R.D., Speed of Sound Data and Related Models for Mixtures of Natural Gas Constituents, NIST Monograph, no. 178, Washington, DC: U.S. Government Printing Office, 1993.

  28. Costa Gomes, M.F. and Trusler, J.P.M., The speed of sound in two methane-rich gas mixtures at temperatures between 250 K and 350 K and at pressures up to 20 MPa, J. Chem. Thermodyn., 1998, vol. 30, p. 1121.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank I. Polishuk for his helpful comments and discussion.

Funding

This study was financially supported by a joint project of the Russian Foundation for Basic Research (RFBR) and the Iran National Science Foundation (INSF), INSF contract no. 96004167 and RFBR grant no. 17-58-560018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Prikhod’ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prikhod’ko, I.V., Samarov, A.A., Toikka, A.M. et al. Prediction of Sound Speed in Natural-Gas Mixtures Using the CP-PC-SAFT Equation of State. Theor Found Chem Eng 54, 1267–1275 (2020). https://doi.org/10.1134/S004057952006010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952006010X

Keywords:

Navigation