Skip to main content
Log in

Effect of treatment time on Corrosion and Tribological behavior of Nitrocarburized coating by Cathodic Plasma Electrolytic Deposition

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The cathodic plasma electrolytic deposition (CPED) was performed in alkaline electrolyte (glycerol + sodium nitrite) to form a nitrocarburized layer on AISI 1045 steel at constant voltage of 380 V. The results indicated that nitrocarburized layer was mainly comprised of ε–Fe2–3N, γ'–Fe4N, Fe3C and Fe [Fe(CN)6]3 phases. As the treatment time was prolonged from 5 to 15 min, the surface porosity increased from 4.13 to 7.43%, while the thickness of layer was increased about 70% from 13 to 22 μm. On the contrary, the corrosion test revealed that the coatings prepared at 10 min treatment time had the best corrosion resistance with a value of 27 384 Ω.cm2. Moreover, the mechanical behavior of coatings was also significantly increased by treatment time. The surface hardness increased 5 times, while the wear friction coefficient and wear rate of nitrocarburized layer were decreased to about \({\text{1/}}3~\) and \(1{\text{/}}6~\) respectively compared to that of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. Plasma Electrolytic Nitrocarburizing.

  2. Energy Dispersive Spectroscopy.

REFERENCES

  1. Bhushan, B., Modern Tribology Handbook, vol. 2: Materials, Coatings, and Industrial Applications, Columbus, OH: CRC Press, 2001.

    Google Scholar 

  2. Morgan, D.W., Met. Fabricating News, 1992, vol. 31, p. 231.

    Google Scholar 

  3. Dossett, J. and Totten, G.E, ASM Handbook, vol. 4A: Steel Heat Treating Fundamentals and Processes, ASM Int., 2013.

  4. Yang, X., Ding, X., Hao, G., Liang, Y., and Lin, J., Plasma Chem. Plasma Process., 2016, vol. 37, p. 1.

    Google Scholar 

  5. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Surf. Coat. Technol., 1999, vol. 122, p. 73.

    Article  CAS  Google Scholar 

  6. Mittemeijer, E.J., in ASM Handbook, vol. 4A: Steel Heat Treating Fundamentals and Processes, ASM Int., 2013, p. 619.

  7. Badisch, E., Trausmuth, A., Ripoll, M.R., Diem, A., Kunze, W., Glück, J., and Orth, P., Key Eng. Mater., 2016, vol. 674, p. 674.

    Article  Google Scholar 

  8. Nasi, P.E., Elektrolitu, L.V., Se, S., and Nitratom, N.I.A., Mater. Technol., 2013, vol. 47, p. 307.

    Google Scholar 

  9. Jiang, Y., Bao, Y., and Yang, K., Surf. Coat. Technol., 2015, vol. 269, p. 324.

    Article  CAS  Google Scholar 

  10. Noori, S.M. and Dehghanian, C., Acta Metall. Slovaca, 2018, vol. 241, p. 20.

    Article  Google Scholar 

  11. Kusmanov, S., Parkaeva, Y.V., Frolov, I., Naumov, A., and Belkin, P., Surf. Eng. Appl. Electrochem., 2015, vol. 51, p. 213.

    Article  Google Scholar 

  12. Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Surf. Coat. Technol., 2016, vol. 307, p. 1194.

    Article  CAS  Google Scholar 

  13. Aliofkhazraei, M. and Rouhaghdam, A.S., Fabrication of Nanostructures by Plasma Electrolysis, Wiley, 2010.

    Book  Google Scholar 

  14. Li, N., Xie, R., Zhou, P., Zou, J., Ma, Y., Wang, Z., Han, P., Tang, B., and Tian, W., Surf. Rev. Lett., 2016, vol. 23, p. 163.

    Article  Google Scholar 

  15. Wang, X., Liu, F., Song, Y., Liu, Z., and Qin, D., Surf. Coat. Technol., 2016, vol. 285, p. 128.

    Article  CAS  Google Scholar 

  16. Kong, J.H., Okumiya, M., Tsunekawa, Y., Takeda, T., Yun, K.Y., Yoshida, M., and Kim, S.G., Surf. Coat. Technol., 2013, vol. 232, p. 275.

    Article  CAS  Google Scholar 

  17. Jiang, Y., Geng, T., Bao, Y., and Zhu, Y., Surf. Coat. Technol., 2013, vol. 216, p. 232.

    Article  CAS  Google Scholar 

  18. Tavakoli, H., Khoie, S.M., Marashi, S.P.H., and Bolhasani, O., J. Mater. Eng. Perform., 2013, vol. 228, p. 2351.

    Article  Google Scholar 

  19. Barrer, R.M., Diffusion in Solids: PG Shewmon, New York: McGraw-Hill, 2010.

    Google Scholar 

  20. Lee, J.H. and Kim, S.J., J. Ceram. Process. Res., 2016, vol. 17, p. 831.

    Google Scholar 

  21. Aliofkhazraei, M., Rouhaghdam, A.S., and Gupta, P., Crit. Rev. Solid State Mater. Sci., 2011, vol. 363, p. 174.

    Article  Google Scholar 

  22. Ashtari Alnakhaei, G., Dehghanian, C., and Alavi, S.H., Tribol.-Mater., Surf. Interfaces, 2011, vol. 52, p. 82.

    Article  Google Scholar 

  23. Wu, J., Zhang, Y., Liu, R., Wang, B., Hua, M., and Xue, W., Appl. Surf. Sci., 2015, vol. 347, p. 673.

    Article  CAS  Google Scholar 

  24. Hussein, R.O., Nie, X., and Northwood, D.O., Mater. Perform. Cathodic Prot., 2017, vol. 99, p. 133.

    Google Scholar 

  25. Aliasghari, S., Němcová, A., Skeldon, P., and Thompson, G.E., Surf. Coat. Technol., 2016, vol. 289, p. 101.

    Article  CAS  Google Scholar 

  26. Hussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., and Matthews, A., J. Phys. D: Appl. Phys., 2010, vol. 4310, p. 105203.

    Article  Google Scholar 

  27. Vázquez, A., Ramírez, A.L., and Juárez, J.A., J. Phys.: Conf. Ser., 2017, vol. 7921, article no. 012019.

    Google Scholar 

  28. Ashrafizadeh, F., Surf. Coat. Technol., 2003, vol. 174, p. 1196.

    Article  Google Scholar 

  29. Metinoz, I., Cristofolini, I., and Molinari, A., J. Mater. Eng. Perform., 2014, vol. 2310, p. 3630.

    Article  Google Scholar 

  30. Liang, J., Guo, S., and Wahab, W.A., J. Mater. Eng. Perform., 2014, vol. 2323, p. 4187.

    Article  Google Scholar 

  31. Nie, X., Tsotsos, C., Wilson, A., Yerokhin, A.L., Leyland, A., and Matthews, A., Surf. Coat. Technol., 2001, vol. 1392, p. 135.

    Article  Google Scholar 

  32. Huan, Z., Fratila-Apachitei, L.E., Apachitei, I., and Duszczyk, J., J. Funct. Biomater., 2012, vol. 3, p. 349.

    Article  CAS  Google Scholar 

  33. Bardwell, J.A. and McKubre, M.C., Electrochim. Acta, 1991, vol. 36, p. 647.

    Article  CAS  Google Scholar 

  34. Bendo, T., Maliska, A.M., Cuña, J.J.S., Binder, C., Demetrio, K.B., and Klein, A.N., Surf. Coat. Technol., 2014, vol. 258, p. 368.

    Article  CAS  Google Scholar 

  35. Velkavrh, I., Trausmuth, A., Ripoll, M.R., Kunze, W., Glück, J., Lingenhöle, K., and Badisch, E., Key Eng. Mater., 2016, vol. 674, p. 674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dehghanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, S.M., Dehghanian, C. Effect of treatment time on Corrosion and Tribological behavior of Nitrocarburized coating by Cathodic Plasma Electrolytic Deposition. Prot Met Phys Chem Surf 57, 121–131 (2021). https://doi.org/10.1134/S2070205120060179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120060179

Keywords:

Navigation