Skip to main content
Log in

Study of Adsorption/Desorption Effect of 2-Mercaptobenzothiazole as Sweet Corrosion Inhibitor on API-5L X60 Steel

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

In this study, the inhibitive performance of 2-mercaptobenzothiazole (2MBT) and 2-aminobenzothiazole (2ABT) were investigated on API-5L X60 steel as corrosion inhibitor in NaCl 3.5 wt % solution saturated with CO2 at 25, 40 and 60°C. The 2ABT compound due to the formation of bicarbonate salt and carbamate does not have good performance as a corrosion inhibitor. Adsorption/desorption effect of 2-mercaptobenzothiazole was studied by electrochemical impedance spectroscopy (EIS) techniques. Adsorption effects of 2MBT on Volta potential of metal surface were studied by mapping via Scanning Kelvin Probe (SKP) method. Volta potential changes in the presence of inhibitor follow corrosion parameters fluctuations that were observed in the other test results with respect to bare metal. Results showed that the 2MBT had adsorption/desorption behavior on metal surface during immersion. Inhibitive properties of 2MBT was studied by weight loss, potentiodynamic polarization and EIS. 2-Mercaptobenzothiazole had effective inhibition performance with 97% efficiency at 300 ppm concentration and excellent adsorption during immersion in sweet corrosion media. Adsorption of 2MBT on the surface of API-5L X60 obeys the Langmuir isotherm model. The value of \({\Delta}G_{{{\text{ads}}}}^{^\circ }\) showed that 2MBT adsorbs on API-5L X60 surface via physical and chemical adsorption processes. 2-Mercaptobenzothiazole increases activation energy of metal dissolution in CO2 saturated solution. Slope change of anodic and cathodic branches in polarization plots revealed that this compound acts as a mixed type inhibitor. Increasing of test media temperature decreases inhibitive power of 2-mercaptobenzothiazole. Contact angle measurements revealed hydrophobic effect of 2-MBT absorption on to sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kahyarian, A., Achour, M., and Nesic, S., in Trends in Oil and Gas Corrosion Research and Technologies, Boston, MA: Woodhead Publ., 2017, p. 149.

  2. Krzemień, A., Więckol-Ryk, A., Smoliński, A., Koteras, A., and Więcław-Solny, L., J. Loss Prev. Process Ind., 2016, vol. 43, p. 189.

  3. Kahyarian, A., Singer, M., and Nesic, S., J. Nat. Gas Sci. Eng., 2016, vol. 29, p. 530.

  4. Wang, B., Du, M., Zhang, J., and Gao, C.J., Corros. Sci., 2011, vol. 53, no.1, p. 353.

  5. Koch, G., in Trends in Oil and Gas Corrosion Research and Technologies, Boston, MA: Woodhead Publ., 2017, p. 3.

  6. Yaro, A.S., Abdul-Khalik, K.R., and Khadom, A.A., J. Loss Prev. Process Ind., 2015, vol. 38, p. 24.

  7. Olvera-Martínez, M.E., Mendoza-Flores, J., and Genesca, J., J. Loss Prev. Process Ind., 2015, vol. 35, p. 19.

  8. Nešić, S., Corros. Sci., 2007, vol. 49, no. 12, p. 4308.

  9. Kermani, M.B. and Morshed, A., Corrosion, 2003, vol. 59, no. 8, p. 659.

  10. Jevremović I., Singer, M., Achour, M., Blumer, D., Baugh, T., Misković-Stanković, V., and Nesĭć, S., Corrosion, 2013, vol. 69, no. 2, p. 186.

  11. Obot, I.B. and Edouk, U.M., J. Mol. Liq., 2017, vol. 246, p. 66.

  12. Sim, S., Cole, I.S., Choi, Y.S., and Birbilis, N., Int. J. Greenhouse Gas Control, 2014, vol. 29, p. 185.

  13. Finšgar, M. and Jackson, J., Corros. Sci., 2014, vol. 86, p. 17.

  14. Danaee, I., Ghasemi, O., Rashed, G.R., Rashvand Avei, M., and Maddahy, M.H., J. Mol. Struct., 2013, vol. 1035, p. 247.

  15. Farelas, F. and Ramirez, A., J. Electrochem. Sci., 2010, vol. 5, p. 798.

  16. Villamizar, W., Casales, M., Gonzalez-Rodriguez, J.G., and Martinez, L., J. Solid State Electrochem., 2007, vol. 11, no. 5, p. 619.

  17. Khodyrev, Y.P., Batyeva, E.S., Badeeva, E.K., Platova, E.V., Tiwari, L., and Sinyashin, O.G., Corros. Sci., 2011, vol. 53, no. 3, p. 976.

  18. Heydari, M. and Javidi, M., Corros. Sci., 2012, vol. 61, p. 148.

  19. Yi, H., Ranran, Y., Yanqiu, Z., Lan, M., Lei, Z., and Zhao, C., Anti-Corros. Methods Mater., 2016, vol. 63, no. 6, p. 437.

  20. Singh, A., Ansari, K.R., Kumar, A., Liu, W., Songsong, C., and Lin, Y., J. Alloys Compd., 2017, vol. 712, p. 121.

  21. Zhang, Y., Pang, X., Qu, S., Li, X., and Gao, K., Corros. Sci., 2012, vol. 59, p. 186.

  22. Cen, H., Cao, J., Chen, Z., and Guo, X., Appl. Surf. Sci., 2019, vol. 476, p. 422.

  23. Mustafa, A.H., Ari-Wahjoedi, B., and Ismail, M.C., J. Mater. Eng. Perform., 2013, vol. 22, no. 6, p. 1748.

  24. Ramachandran, S., in Trends in Oil and Gas Corrosion Research and Technologies, El-Sherik, A.M., Ed., Boston, MA: Woodhead Publ., 2017, p. 455.

  25. Popov, B.N., Basics of Corrosion Measurements, chap. 5 of Corrosion Engineering, Amsterdam: Elsevier, 2015, p. 181.

  26. Gerengi, H., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, p. 536.

  27. Melitz, W., Shen, J., Kummel, A.C., and Lee, S., Surf. Sci. Rep., 2011, vol. 66, no. 1, p. 1.

  28. Finot, E., Leonenko, Y., Moores, B., Eng, L., Amrein, M., and Leonenko, Z., Langmuir, 2010, vol. 26, no. 3, p. 6.

  29. Ebrahimi, G., Neshati, J., and Rezaei, F., Prog. Org. Coat., 2017, vol. 105, p. 1.

  30. ASTM-G31-12a: Standard Guide for Laboratory Immersion Corrosion Testing of Metals, West Conshohocken, PA: ASTM Int., 2012.

  31. ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, West Conshohocken, PA: ASTM Int., 2017.

  32. NACE-SP0775: Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations, NACE Int., 2013.

  33. Nesic, S. and Sun, W., in Shreir's Corrosion, Graham, M., et al., Eds., Oxford: Elsevier, 2010, p. 1270.

  34. Ismail, M.C., Yahya, S., and Raja, P.B., J. Mol. Liq., 2019, vol. 293, p. 111504.

  35. Zvauya, R. and Dawson, J.L., J. Chem. Technol. Biotechnol., 1994, vol. 61, no. 4, p. 5.

  36. Dalayan, E.S., Corrosion, 1995, vol. 95, p. 118.

  37. Pots, D.F.M., Proc. Corrosion’95: National Association of Corrosion Engineers (NACE) Int. Annual Conference and Corrosion Show, Orlando, FL, 1995, p. 118.

  38. Peimani, A. and Nasr-Esfahani, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 122.

  39. Dugstad, A., Mechanism of protective film formation during CO2 corrosion of carbon steel, in Corrosion, NACE International: San Diego, 1998, Paper no. 31.

  40. Farelas, F., Brown, B., and Nesic, S., Proc. Corrosion’2013, Orlando, FL, 2013, paper no. 2291.

  41. Cui, Z.D., Wu, S.L., Zhu, S.L., and Yang, X.J., Appl. Surf. Sci., 2006, vol. 252, no. 6, p. 2368.

  42. Kim, S., Shi, H., and Lee, J.Y., Int. J. Greenhouse Gas Control, 2016, vol. 45, p. 181.

  43. Wu, K., Zhou, X., Wu, X., Lv, B., Jing, G., and Zhou, Z., Int. J. Greenhouse Gas Control, 2019, vol. 83, p. 216.

  44. Zhang, C., Duan, H., and Zhao, J., Corros. Sci., 2016, vol. 112, p. 160.

  45. Lebrini, M., Lagrenée, M., Vezin, H., Gengembre, L., and Bentiss, F., Corros. Sci., 2005, vol. 47, no. 2, p. 485.

  46. Zhang, G., Chen, C., Lu, M., Chai, C., and Wu, Y., Mater. Chem. Phys., 2007, vol. 105, no. 2, p. 331.

  47. Hosseini, M., Mertens, S.F.L., and Arshadi, M.R., Corros. Sci., 2003, vol. 45, no. 7, p. 1473.

  48. Charitha, B.P. and Rao, P., J. Ind. Eng. Chem., 2018, vol. 58, p. 357.

  49. Alvarez, P.E., Fiori-Bimbi, M.V., Neske, A., Brandán, S.A., and Gervasi, C.A., J. Ind. Eng. Chem., 2018, vol. 58, p. 92.

  50. Zhang, Q.H., Hou, B.S., Xu, N., Liu, H.F., and Zhang, G.A., J. Taiwan Inst. Chem. Eng., 2019, vol. 96, p. 588.

  51. Qian, S. and Cheng, Y.F., J. Mol. Liq., 2019, vol. 294, p. 111674.

  52. Arjunan, V., Balamourougane, P.S., Mythili, C.V., Mohan, S., and Nandhakumar, V., J. Mol. Struct., 2011, vol. 1006, no. 1, p. 247.

  53. Jafari, H., Akbarzade, K., and Danaee, I., Arabian J. Chem., 2014, vol. 12, no. 7.https://doi.org/10.1016/j.arabjc.2014.11.018

  54. Danaee, I., Gholami, M., Rashvand Avei, M., and Maddahy, M.H., J. Ind. Eng. Chem., 2015, vol. 26, p. 81.

  55. Atkins, P.W., in Physical Chemistry, Oxford: Oxford Univ. Press, 1990.

  56. Zhang, H.-h., Gao, K., Yan, L., and Pang, X., J. Electroanal. Chem., 2017, vol. 791, p. 83.

  57. Solmaz, R., Kardaş, G., Çulha, M., Yazıcı, B., and Erbil, M., Electrochim. Acta, 2008, vol. 53, no. 20, p. 5941.

  58. Solomon, M.M., Umoren, S.A., Udosoro, I.I., and Udoh, A.P., Corros. Sci., 2010, vol. 52, no. 4, p. 1317.

  59. Jafari, H., Danaee, I., Eskandari, H., and Rashvand Avei, M., J. Mater. Sci. Technol., 2014, vol. 30, no. 3, p. 239.

  60. Moradi, Z. and Attar, M.M., Appl. Surf. Sci., 2014, vol. 317, p. 657.

  61. Singh, A., Lin, Y., Ebenso, E.E., Liu, W., Pan, J., and Huang, B., J. Ind. Eng. Chem., 2015, vol. 24, p. 219.

  62. Adamson, A.W. and Gast, A.P., in Physical Chemistry of Surfaces, New York: Wiley-Interscience, 1997.

  63. Liu, L. and Li, G., Appl. Phys. Lett., 2010, vol. 96, p. 083302.

  64. Marcus, P., Analytical Methods in Corrosion Science and Engineering, New York: Taylor & Francis, 2005, vol. 1.

  65. Senöz, C., Maljusch, A., Rohwerder, M., and Schuhmann, W., Electroanalysis, 2012, vol. 24, no. 2, p. 239.

  66. Ebrahimi, G., Rezaei, F., and Neshati, J., J. Taiwan Inst. Chem. Eng., 2017, vol. 70, p. 427.

  67. Ismail, K.M., Electrochim. Acta, 2007, vol. 52, no. 28, p. 7811.

  68. Nagarajan, R., Langmuir, 2002, vol. 18, no. 1, p. 31.

  69. Cullis, P.R., Hope, M.J., and Tilcock, C.P.S., Chem. Phys. Lipids, 1986, vol. 40, no. 2, p. 127.

  70. Butt, H.-J., Graf, K., and Kappl, M., Surfactants, in Physics and Chemistry of Interfaces, Wiley-VCH, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Akbarinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Zamani Gharaghooshi, Akbarinezhad, E., Esmaeili, N. et al. Study of Adsorption/Desorption Effect of 2-Mercaptobenzothiazole as Sweet Corrosion Inhibitor on API-5L X60 Steel. Prot Met Phys Chem Surf 57, 153–167 (2021). https://doi.org/10.1134/S2070205120060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120060106

Keywords:

Navigation