Skip to main content

Advertisement

Log in

Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shortman K, Wu L (1996) Early T lymphocyte progenitors. Annu Rev Immunol 14:29–47. https://doi.org/10.1146/annurev.immunol.14.1.29

    Article  CAS  PubMed  Google Scholar 

  2. Hao QL, George AA, Zhu J, Barsky L, Zielinska E, Wang X, Price M, Ge S, Crooks GM (2008) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7- lympho-myeloid thymic progenitors. Blood 111(3):1318–1326. https://doi.org/10.1182/blood-2007-08-106294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haddad R, Guimiot F, Six E, Jourquin F, Setterblad N, Kahn E, Yagello M, Schiffer C, Andre-Schmutz I, Cavazzana-Calvo M, Gluckman JC, Delezoide AL, Pflumio F, Canque B (2006) Dynamics of thymus-colonizing cells during human development. Immunity 24(2):217–230. https://doi.org/10.1016/j.immuni.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  4. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135. https://doi.org/10.1038/nri1781

    Article  CAS  PubMed  Google Scholar 

  5. Krueger A, Ziętara N, Łyszkiewicz M (2017) T cell development by the numbers. Trends Immunol 38(2):128–139. https://doi.org/10.1016/j.it.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Liu CP, Auerbach R (1991) In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Develop 113(4):1315–1323

    CAS  Google Scholar 

  7. Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N, Cardoso AA, Kaplan MH, Yoder MC (2012) Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119(24):5706–5714. https://doi.org/10.1182/blood-2011-12-397489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lacaud G, Kouskoff V (2017) Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 49:19–24. https://doi.org/10.1016/j.exphem.2016.12.009

    Article  PubMed  Google Scholar 

  9. McVay LD, Carding SR (1996) Extrathymic origin of human gamma delta T cells during fetal development. J Immunol 157(7):2873–2882

    CAS  PubMed  Google Scholar 

  10. McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR (1998) The generation of human gammadelta T cell repertoires during fetal development. J Immunol 160(12):5851–5860

    CAS  PubMed  Google Scholar 

  11. Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35:85–118. https://doi.org/10.1146/annurev-immunol-051116-052320

    Article  CAS  PubMed  Google Scholar 

  12. Kadouri N, Nevo S, Goldfarb Y, Abramson J (2020) Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol 20(4):239–253. https://doi.org/10.1038/s41577-019-0238-0

    Article  CAS  PubMed  Google Scholar 

  13. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. https://doi.org/10.1016/j.it.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  14. Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, Barthlott T, Ponting CP, Holländer GA (2016) Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17(10):1206–1215. https://doi.org/10.1038/ni.3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172(4):2067–2075. https://doi.org/10.4049/jimmunol.172.4.2067

    Article  CAS  PubMed  Google Scholar 

  16. Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29(3):438–450. https://doi.org/10.1016/j.immuni.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  17. Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29(3):423–437. https://doi.org/10.1016/j.immuni.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  18. Ucar O, Li K, Dvornikov D, Kreutz C, Timmer J, Matt S, Brenner L, Smedley C, Travis MA, Hofmann TG, Klingmüller U, Kyewski B (2016) A thymic epithelial stem cell pool persists throughout ontogeny and is modulated by TGF-β. Cell Rep 17(2):448–457. https://doi.org/10.1016/j.celrep.2016.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hauri-Hohl M, Zuklys S, Holländer GA, Ziegler SF (2014) A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat Immunol 15(6):554–561. https://doi.org/10.1038/ni.2869

    Article  CAS  PubMed  Google Scholar 

  20. Kumar BV, Connors TJ, Farber DL (2018) Human T cell development, localization, and function throughout Life. Immunity 48(2):202–213. https://doi.org/10.1016/j.immuni.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah DK, Zúñiga-Pflücker JC (2014) An overview of the intrathymic intricacies of T cell development. J Immunol 192(9):4017–4023. https://doi.org/10.4049/jimmunol.1302259

    Article  CAS  PubMed  Google Scholar 

  22. Famili F, Wiekmeijer AS, Staal FJ (2017) The development of T cells from stem cells in mice and humans. Future Sci OA 3(3):Fso186. https://doi.org/10.4155/fsoa-2016-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taghon T, Waegemans E, Van de Walle I (2012) Notch signaling during human T cell development. Curr Top Microbiol Immunol 360:75–97. https://doi.org/10.1007/82_2012_230

    Article  CAS  PubMed  Google Scholar 

  24. Farley AM, Morris LX, Vroegindeweij E, Depreter ML, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC (2013) Dynamics of thymus organogenesis and colonization in early human development. Develop 140(9):2015–2026. https://doi.org/10.1242/dev.087320

    Article  CAS  Google Scholar 

  25. Gordon J, Manley NR (2011) Mechanisms of thymus organogenesis and morphogenesis. Develop 138(18):3865–3878. https://doi.org/10.1242/dev.059998

    Article  CAS  Google Scholar 

  26. Haynes BF, Heinly CS (1995) Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 181(4):1445–1458. https://doi.org/10.1084/jem.181.4.1445

    Article  CAS  PubMed  Google Scholar 

  27. Haynes BF, Martin ME, Kay HH, Kurtzberg J (1988) Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med 168(3):1061–1080. https://doi.org/10.1084/jem.168.3.1061

    Article  CAS  PubMed  Google Scholar 

  28. Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390. https://doi.org/10.1002/eji.200425763

    Article  CAS  PubMed  Google Scholar 

  29. Michaëlsson J, Mold JE, McCune JM, Nixon DF (2006) Regulation of T cell responses in the developing human fetus. J Immunol 176(10):5741–5748. https://doi.org/10.4049/jimmunol.176.10.5741

    Article  PubMed  Google Scholar 

  30. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AF, Ackermans MT, Miedema F, Borghans JA, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297. https://doi.org/10.1016/j.immuni.2012.02.006

    Article  CAS  Google Scholar 

  31. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. https://doi.org/10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  32. Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–S11. https://doi.org/10.1038/nmeth.1557

  33. Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, Ding M, Xiong F, Zheng X, Li Z, Ni Y, Mu X, Wen L, Cheng T, Lan Y, Yuan W, Tang F, Liu B (2016) Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533(7604):487–492. https://doi.org/10.1038/nature17997

  34. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru K, Mazutis L, Rudensky AY, Pe'er D (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174(5):1293–1308.e1236. https://doi.org/10.1016/j.cell.2018.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng Y, He J, Bai Z, Li Z, Gong Y, Liu C, Ni Y, Du J, Ma C, Bian L, Lan Y, Liu B (2019) Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29(11):881–894. https://doi.org/10.1038/s41422-019-0228-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, Shekhar K, Chen Z, Wu C, Ordovas-Montanes J, Alvarez D, Herbst RH, Zhang M, Tirosh I, Dionne D, Nguyen LT, Xifaras ME, Shalek AK, von Andrian UH, Graham DB, Rozenblatt-Rosen O, Shi HN, Kuchroo V, Yilmaz OH, Regev A, Xavier RJ (2018) T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175(5):1307–1320.e1322. https://doi.org/10.1016/j.cell.2018.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, Fromme R, Mazutis L, Ariyan C, Leslie C, Pe'er D, Rudensky AY (2019) Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179(4):846–863.e824. https://doi.org/10.1016/j.cell.2019.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631–643.e634. https://doi.org/10.1016/j.molcel.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  39. Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med 208(12):2417–2427. https://doi.org/10.1084/jem.20111688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Develop 126(22):5073–5084

    CAS  Google Scholar 

  41. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y (1999) Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 190(11):1617–1626. https://doi.org/10.1084/jem.190.11.1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y (1999) Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol 162(5):2725–2731

    CAS  PubMed  Google Scholar 

  43. Res P, Spits H (1999) Developmental stages in the human thymus. Semin Immunol 11(1):39–46. https://doi.org/10.1006/smim.1998.0152

    Article  CAS  PubMed  Google Scholar 

  44. Tavian M, Hallais MF, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Develop 126(4):793–803

    CAS  Google Scholar 

  45. Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H (2019) Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity 51(5):930–948.e936. https://doi.org/10.1016/j.immuni.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  46. Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A (2017) Understanding hematopoietic stem cell development through functional correlation of their proliferative status with the intra-aortic cluster architecture. Stem Cell Rep 8(6):1549–1562. https://doi.org/10.1016/j.stemcr.2017.04.003

    Article  CAS  Google Scholar 

  47. Hou S, Li Z, Zheng X, Gao Y, Dong J, Ni Y, Wang X, Li Y, Ding X, Chang Z, Li S, Hu Y, Fan X, Hou Y, Wen L, Liu B, Tang F, Lan Y (2020) Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res 30(5):376–392. https://doi.org/10.1038/s41422-020-0300-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lièvre F, Péault B (1996) Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87(1):67–72

    Article  CAS  PubMed  Google Scholar 

  49. Tavian M, Robin C, Coulombel L, Péault B (2001) The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15(3):487–495. https://doi.org/10.1016/s1074-7613(01)00193-5

    Article  CAS  PubMed  Google Scholar 

  50. Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A (2017) Human haematopoietic stem cell development: from the embryo to the dish. Develop 144(13):2323–2337. https://doi.org/10.1242/dev.134866

    Article  CAS  Google Scholar 

  51. Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D, Testa U, Marinucci M, Peschle C (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac----liver transition. J Clin Invest 78(1):51–60. https://doi.org/10.1172/jci112572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oberlin E, Fleury M, Clay D, Petit-Cocault L, Candelier JJ, Mennesson B, Jaffredo T, Souyri M (2010) VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver. Blood 116(22):4444–4455. https://doi.org/10.1182/blood-2010-03-272625

    Article  CAS  PubMed  Google Scholar 

  53. O'Rahilly R, Müller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192(2):73–84. https://doi.org/10.1159/000289817

    Article  PubMed  Google Scholar 

  54. Charbord P, Tavian M, Humeau L, Péault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87(10):4109–4119

    Article  CAS  PubMed  Google Scholar 

  55. Haynes BF, Scearce RM, Lobach DF, Hensley LL (1984) Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med 159(4):1149–1168. https://doi.org/10.1084/jem.159.4.1149

    Article  CAS  PubMed  Google Scholar 

  56. Lobach DF, Haynes BF (1987) Ontogeny of the human thymus during fetal development. J Clin Immunol 7(2):81–97. https://doi.org/10.1007/bf00916002

    Article  CAS  PubMed  Google Scholar 

  57. Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, Macdonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205(11):2515–2523. https://doi.org/10.1084/jem.20080829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108(8):2531–2539. https://doi.org/10.1182/blood-2006-05-024190

    Article  CAS  PubMed  Google Scholar 

  59. Galy A, Verma S, Bárcena A, Spits H (1993) Precursors of CD3 + CD4 + CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J Exp Med 178(2):391–401. https://doi.org/10.1084/jem.178.2.391

    Article  CAS  PubMed  Google Scholar 

  60. Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321. https://doi.org/10.1146/annurev-immunol-032712-100024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luc S, Luis TC, Boukarabila H, Macaulay IC, Buza-Vidas N, Bouriez-Jones T, Lutteropp M, Woll PS, Loughran SJ, Mead AJ, Hultquist A, Brown J, Mizukami T, Matsuoka S, Ferry H, Anderson K, Duarte S, Atkinson D, Soneji S, Domanski A, Farley A, Sanjuan-Pla A, Carella C, Patient R, de Bruijn M, Enver T, Nerlov C, Blackburn C, Godin I, Jacobsen SE (2012) The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 13(4):412–419. https://doi.org/10.1038/ni.2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, Meraz A, Bhandoola A (2003) Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 4(2):168–174. https://doi.org/10.1038/ni878

    Article  CAS  PubMed  Google Scholar 

  63. Luis TC, Luc S, Mizukami T, Boukarabila H, Thongjuea S, Woll PS, Azzoni E, Giustacchini A, Lutteropp M, Bouriez-Jones T, Vaidya H, Mead AJ, Atkinson D, Böiers C, Carrelha J, Macaulay IC, Patient R, Geissmann F, Nerlov C, Sandberg R, de Bruijn M, Blackburn CC, Godin I, Jacobsen SEW (2016) Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nat Immunol 17(12):1424–1435. https://doi.org/10.1038/ni.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Böiers C, Carrelha J, Lutteropp M, Luc S, Green JC, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G, Perdiguero EG, Macaulay IC, Melchiori L, Luis TC, Kharazi S, Bouriez-Jones T, Deng Q, Pontén A, Atkinson D, Jensen CT, Sitnicka E, Geissmann F, Godin I, Sandberg R, de Bruijn MF, Jacobsen SE (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548. https://doi.org/10.1016/j.stem.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  65. Ramond C, Berthault C, Burlen-Defranoux O, de Sousa AP, Guy-Grand D, Vieira P, Pereira P, Cumano A (2014) Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat Immunol 15(1):27–35. https://doi.org/10.1038/ni.2782

    Article  CAS  PubMed  Google Scholar 

  66. Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P (2019) New molecular insights into immune cell development. Annu Rev Immunol 37:497–519. https://doi.org/10.1146/annurev-immunol-042718-041319

    Article  CAS  PubMed  Google Scholar 

  67. Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA (2020) A cell atlas of human thymic development defines T cell repertoire formation. Science (New York, NY) 367(6480):eaay3224. https://doi.org/10.1126/science.aay3224

    Article  CAS  Google Scholar 

  68. Elsaid R, Meunier S, Burlen-Defranoux O, Soares-da-Silva F, Perchet T, Iturri L, Freyer L, Vieira P, Pereira P, Golub R, Bandeira A, Perdiguero EG, Cumano A (2020) A wave of embryonic bipotent T/lymphoid tissue inducer progenitors regulates the maturation of medullary thymic epithelial cells. bioRxiv:791103. https://doi.org/10.1101/791103

  69. Ardavin C, Wu L, Li CL, Shortman K (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362(6422):761–763. https://doi.org/10.1038/362761a0

    Article  CAS  PubMed  Google Scholar 

  70. Zlotoff DA, Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Ann N Y Acad Sci 1217:122–138. https://doi.org/10.1111/j.1749-6632.2010.05881.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chi AW, Bell JJ, Zlotoff DA, Bhandoola A (2009) Untangling the T branch of the hematopoiesis tree. Curr Opin Immunol 21(2):121–126. https://doi.org/10.1016/j.coi.2009.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yui MA, Rothenberg EV (2014) Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 14(8):529–545. https://doi.org/10.1038/nri3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bárcena A, Muench MO, Roncarolo MG, Spits H (1995) Tracing the expression of CD7 and other antigens during T- and myeloid-cell differentiation in the human fetal liver and thymus. Leuk Lymphoma 17(1-2):1–11. https://doi.org/10.3109/10428199509051697

    Article  PubMed  Google Scholar 

  74. Bárcena A, Muench MO, Galy AH, Cupp J, Roncarolo MG, Phillips JH, Spits H (1993) Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development. Blood 82(11):3401–3414

    Article  PubMed  Google Scholar 

  75. Weerkamp F, Baert MR, Brugman MH, Dik WA, de Haas EF, Visser TP, de Groot CJ, Wagemaker G, van Dongen JJ, Staal FJ (2006) Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107(8):3131–3137. https://doi.org/10.1182/blood-2005-08-3412

    Article  CAS  PubMed  Google Scholar 

  76. Moretti FA, Klapproth S, Ruppert R, Margraf A, Weber J, Pick R, Scheiermann C, Sperandio M, Fässler R, Moser M (2018) Differential requirement of kindlin-3 for T cell progenitor homing to the non-vascularized and vascularized thymus. eLife 7:e35816. https://doi.org/10.7554/eLife.35816

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhou W, Yui MA, Williams BA, Yun J, Wold BJ, Cai L, Rothenberg EV (2019) Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment in early T cell development. Cell Syst 9(4):321–337.e329. https://doi.org/10.1016/j.cels.2019.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ivanovs A, Rybtsov S, Anderson RA, Turner ML, Medvinsky A (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Rep 2(4):449–456. https://doi.org/10.1016/j.stemcr.2014.02.004

    Article  Google Scholar 

  79. Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8(6):761–769. https://doi.org/10.1016/s1074-7613(00)80581-6

    Article  CAS  PubMed  Google Scholar 

  80. Guo R, Hu F, Weng Q, Lv C, Wu H, Liu L, Li Z, Zeng Y, Bai Z, Zhang M, Liu Y, Liu X, Xia C, Wang T, Zhou P, Wang K, Dong Y, Luo Y, Zhang X, Guan Y, Geng Y, Du J, Li Y, Lan Y, Chen J, Liu B, Wang J (2020) Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res 30(1):21–33. https://doi.org/10.1038/s41422-019-0251-7

    Article  CAS  PubMed  Google Scholar 

  81. Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF (2006) Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential--differences between men and mice. J Immunol 176(3):1543–1552. https://doi.org/10.4049/jimmunol.176.3.1543

    Article  CAS  PubMed  Google Scholar 

  82. La Cava A (2019) Human T cell repertoire: what happens in thymus does not stay in thymus. J Clin Invest 129(6):2195–2197. https://doi.org/10.1172/jci128371

    Article  PubMed  PubMed Central  Google Scholar 

  83. Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Briggs AW, Vigneault F, Atwal GS (2018) T-cell receptor αβ chain pairing is associated with CD4+ and CD8+ lineage specification. bioRxiv 1:293852. https://doi.org/10.1101/293852

    Article  CAS  Google Scholar 

  84. Khosravi-Maharlooei M, Obradovic A, Misra A, Motwani K, Holzl M, Seay HR, DeWolf S, Nauman G, Danzl N, Li H, Ho SH, Winchester R, Shen Y, Brusko TM, Sykes M (2019) Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J Clin Invest 129(6):2446–2462. https://doi.org/10.1172/jci124358

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48(6):1091–1103. https://doi.org/10.1016/j.immuni.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  86. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174(5):1054–1066. https://doi.org/10.1016/j.cell.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  87. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149. https://doi.org/10.1038/nri3365

    Article  CAS  PubMed  Google Scholar 

  88. Rankin L, Groom J, Mielke LA, Seillet C, Belz GT (2013) Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front Immunol 4:22. https://doi.org/10.3389/fimmu.2013.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3:e04406. https://doi.org/10.7554/eLife.04406

    Article  CAS  PubMed Central  Google Scholar 

  90. Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V, Kee B, Brady H, Coles MC, Vosshenrich C, Kubo M, Di Santo JP, Veiga-Fernandes H (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10(12):2043–2054. https://doi.org/10.1016/j.celrep.2015.02.057

    Article  CAS  PubMed  Google Scholar 

  91. Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, Wang H, Wang X, Yu S, Zhou X, Cam M, Xue HH, Bhandoola A (2015) TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 16(10):1044–1050. https://doi.org/10.1038/ni.3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 16(6):599–608. https://doi.org/10.1038/ni.3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, Huntington ND, Belz GT, Carotta S (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211(9):1733–1740. https://doi.org/10.1084/jem.20140145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delconte RB, Shi W, Sathe P, Ushiki T, Seillet C, Minnich M, Kolesnik TB, Rankin LC, Mielke LA, Zhang JG, Busslinger M, Smyth MJ, Hutchinson DS, Nutt SL, Nicholson SE, Alexander WS, Corcoran LM, Vivier E, Belz GT, Carotta S, Huntington ND (2016) The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44(1):103–115. https://doi.org/10.1016/j.immuni.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  95. Zook EC, Li ZY, Xu Y, de Pooter RF, Verykokakis M, Beaulieu A, Lasorella A, Maienschein-Cline M, Sun JC, Sigvardsson M, Kee BL (2018) Transcription factor ID2 prevents E proteins from enforcing a naïve T lymphocyte gene program during NK cell development. Sci Immunol 3(22). https://doi.org/10.1126/sciimmunol.aao2139

  96. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648. https://doi.org/10.1016/j.immuni.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T, Belkaid Y, Zhao K, Zhu J (2014) The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40(3):378–388. https://doi.org/10.1016/j.immuni.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508(7496):397–401. https://doi.org/10.1038/nature13047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D, Groner Y, Bern MD, Stappenbeck TS, Colonna M, Egawa T, Yokoyama WM (2015) Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol 16(11):1124–1133. https://doi.org/10.1038/ni.3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Etzensperger R, Kadakia T, Tai X, Alag A, Guinter TI, Egawa T, Erman B, Singer A (2017) Identification of lineage-specifying cytokines that signal all CD8(+)-cytotoxic-lineage-fate 'decisions' in the thymus. Nat Immunol 18(11):1218–1227. https://doi.org/10.1038/ni.3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356. https://doi.org/10.1016/j.cell.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  102. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211(3):563–577. https://doi.org/10.1084/jem.20131560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, Li H, Avram D (2015) Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43(2):354–368. https://doi.org/10.1016/j.immuni.2015.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN (2012) Transcription factor RORα is critical for nuocyte development. Nat Immunol 13(3):229–236. https://doi.org/10.1038/ni.2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, Belz G, Liu P, Fallon PG, McKenzie AN (2015) Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med 212(6):875–882. https://doi.org/10.1084/jem.20142224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. KleinJan A, Klein Wolterink RG, Levani Y, de Bruijn MJ, Hoogsteden HC, van Nimwegen M, Hendriks RW (2014) Enforced expression of Gata3 in T cells and group 2 innate lymphoid cells increases susceptibility to allergic airway inflammation in mice. J Immunol 192(4):1385–1394. https://doi.org/10.4049/jimmunol.1301888

    Article  CAS  PubMed  Google Scholar 

  107. Cording S, Medvedovic J, Cherrier M, Eberl G (2014) Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett 588(22):4176–4181. https://doi.org/10.1016/j.febslet.2014.03.034

    Article  CAS  PubMed  Google Scholar 

  108. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375. https://doi.org/10.1038/nature08949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10(1):83–91. https://doi.org/10.1038/ni.1684

    Article  CAS  PubMed  Google Scholar 

  110. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29(6):958–970. https://doi.org/10.1016/j.immuni.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  111. Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, Wack A, Brady HJ (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211(4):635–642. https://doi.org/10.1084/jem.20132398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nagasawa M, Germar K, Blom B, Spits H (2017) Human CD5(+) innate lymphoid cells are functionally immature and their development from CD34(+) progenitor cells is regulated by Id2. Front Immunol 8:1047. https://doi.org/10.3389/fimmu.2017.01047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang HC, Qian L, Zhao Y, Mengarelli J, Adrianto I, Montgomery CG, Urban JF Jr, Fung KM, Sun XH (2017) Downregulation of E protein activity augments an ILC2 differentiation program in the thymus. J Immunol 198(8):3149–3156. https://doi.org/10.4049/jimmunol.1602009

    Article  CAS  PubMed  Google Scholar 

  114. Qian L, Bajana S, Georgescu C, Peng V, Wang HC, Adrianto I, Colonna M, Alberola-Ila J, Wren JD, Sun XH (2019) Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med 216(4):884–899. https://doi.org/10.1084/jem.20182100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40(5):656–662. https://doi.org/10.1038/ng.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones R, Cosway EJ, Willis C, White AJ, Jenkinson WE, Fehling HJ, Anderson G, Withers DR (2018) Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol 48(9):1481–1491. https://doi.org/10.1002/eji.201847511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nitta T, Tsutsumi M, Nitta S, Muro R, Suzuki EC, Nakano K, Tomofuji Y, Sawa S, Okamura T, Penninger JM, Takayanagi H (2020) Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol 21(10):1172–1180. https://doi.org/10.1038/s41590-020-0756-8

    Article  CAS  PubMed  Google Scholar 

  118. Allan DS, Kirkham CL, Aguilar OA, Qu LC, Chen P, Fine JH, Serra P, Awong G, Gommerman JL, Zúñiga-Pflücker JC, Carlyle JR (2015) An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol 8(2):340–351. https://doi.org/10.1038/mi.2014.71

    Article  CAS  PubMed  Google Scholar 

  119. Onder L, Mörbe U, Pikor N, Novkovic M, Cheng HW, Hehlgans T, Pfeffer K, Becher B, Waisman A, Rülicke T, Gommerman J, Mueller CG, Sawa S, Scandella E, Ludewig B (2017) Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47(1):80–92.e84. https://doi.org/10.1016/j.immuni.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  120. Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu YX, Zal T, Zhu C, Sun SC (2013) OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494(7437):371–374. https://doi.org/10.1038/nature11831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R (2018) A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation. Immunity 48(6):1258–1270.e1256. https://doi.org/10.1016/j.immuni.2018.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123. https://doi.org/10.1038/ni.3298

    Article  CAS  PubMed  Google Scholar 

  123. Lee M, Lee E, Han SK, Choi YH, D-i K, Choi H, Lee K, Park ES, Rha M-S, Joo DJ, Shin E-C, Kim S, Kim JK, Lee YJ (2020) Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat Commun 11(1):4367. https://doi.org/10.1038/s41467-020-18155-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339(1):141–154. https://doi.org/10.1016/j.ydbio.2009.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16(6):803–814. https://doi.org/10.1016/s1074-7613(02)00321-7

    Article  CAS  PubMed  Google Scholar 

  126. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988–991. https://doi.org/10.1038/nature04813

    Article  CAS  PubMed  Google Scholar 

  127. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Holländer GA (2002) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3(11):1102–1108. https://doi.org/10.1038/ni850

    Article  CAS  PubMed  Google Scholar 

  128. Bleul CC, Boehm T (2005) BMP signaling is required for normal thymus development. J Immunol 175(8):5213–5221. https://doi.org/10.4049/jimmunol.175.8.5213

    Article  CAS  PubMed  Google Scholar 

  129. Heinonen KM, Vanegas JR, Brochu S, Shan J, Vainio SJ, Perreault C (2011) Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118(19):5163–5173. https://doi.org/10.1182/blood-2011-04-350553

    Article  CAS  PubMed  Google Scholar 

  130. Nehls M, Kyewski B, Messerle M, Waldschütz R, Schüddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science (New York, NY) 272(5263):886–889. https://doi.org/10.1126/science.272.5263.886

    Article  CAS  Google Scholar 

  131. Cowan JE, Malin J, Zhao Y, Seedhom MO, Harly C, Ohigashi I, Kelly M, Takahama Y, Yewdell JW, Cam M, Bhandoola A (2019) Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nat Commun 10(1):5498. https://doi.org/10.1038/s41467-019-13465-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, Goldberg O, Itzkovitz S, Taylor N, Jay P, Zimmermann VS, Abramson J, Amit I (2018) Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559(7715):622–626. https://doi.org/10.1038/s41586-018-0346-1

    Article  CAS  PubMed  Google Scholar 

  133. Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, Rui L (2019) Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 116(38):19090–19097. https://doi.org/10.1073/pnas.1901056116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Onder L, Nindl V, Scandella E, Chai Q, Cheng HW, Caviezel-Firner S, Novkovic M, Bomze D, Maier R, Mair F, Ledermann B, Becher B, Waisman A, Ludewig B (2015) Alternative NF-κB signaling regulates mTEC differentiation from podoplanin-expressing precursors in the cortico-medullary junction. Eur J Immunol 45(8):2218–2231. https://doi.org/10.1002/eji.201545677

    Article  CAS  PubMed  Google Scholar 

  135. Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G (2016) Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK(+) medullary epithelial progenitors. Eur J Immunol 46(4):857–862. https://doi.org/10.1002/eji.201546253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA (2020) Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 9:e56221. https://doi.org/10.7554/eLife.56221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP (2020) Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 39(1):e101828. https://doi.org/10.15252/embj.2019101828

    Article  CAS  PubMed  Google Scholar 

  138. Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA (2014) Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 24(12):1918–1931. https://doi.org/10.1101/gr.171645.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 16(9):933–941. https://doi.org/10.1038/ni.3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Herzig Y, Nevo S, Bornstein C, Brezis MR, Ben-Hur S, Shkedy A, Eisenberg-Bord M, Levi B, Delacher M, Goldfarb Y, David E, Weinberger L, Viukov S, Ben-Dor S, Giraud M, Hanna JH, Breiling A, Lyko F, Amit I, Feuerer M, Abramson J (2017) Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol 18(2):161–172. https://doi.org/10.1038/ni.3638

    Article  CAS  PubMed  Google Scholar 

  141. Mathis D, Benoist C (2007) A decade of AIRE. Nat Rev Immunol 7(8):645–650. https://doi.org/10.1038/nri2136

    Article  CAS  PubMed  Google Scholar 

  142. Lowe RM, Li H, Hsu HC, Mountz JD (2018) Regulation of negative selection in the thymus by cytokines: novel role of IL-23 to regulate RORγt. In: Soboloff J, Kappes DJ (eds) Signaling Mechanisms Regulating T Cell Diversity and Function. CRC Press/Taylor & Francis © 2017 Taylor & Francis Group, LLC., Boca Raton (FL), pp 41–52. https://doi.org/10.1201/9781315371689-3

    Chapter  Google Scholar 

  143. Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 18(3):263–273. https://doi.org/10.1038/ni.3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors apologize to peers whose work inspire this review but could not be cited due to the word limitation.

Funding

This work is supported by the Ministry of Science and Technology of China (the National Key Research and Development Program 2019YFA0110200 and 2016YFA0502203), the National Natural Science Foundation of China (82025002, 81871232 and 31870881), the 1.3.5 Project of disciplines of excellence and National Clinical Research Center for Geriatrics (Z20201001), and the West China Hospital, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiyuan Zhang or Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on: The thymus and autoimmunity - Guest Editor: Georg Holländer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Chen, H., Zeng, Y. et al. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 43, 29–43 (2021). https://doi.org/10.1007/s00281-020-00834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-020-00834-9

Keywords

Navigation