Skip to main content
Log in

Effect of Nano-Fe as Feed Supplement on Growth Performance, Survival Rate, Blood Parameters and Immune Functions of the Stellate Sturgeon (Acipenser stellatus)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The present study is aimed to investigate the effects of iron nanoparticles (Fe-NPs) on growth performance, liver histopathology and some blood parameters of the stellate sturgeon (Acipenser stellatus) juvenile. A total of 144 fish (182.09 ± 9.05 g) were fed diets containing graded levels of Fe-NPs (0, 25, 50, and 100 mg kg–1 diet) for 8 weeks. No significant differences were observed in weight gain, body weight increases, specific growth rate, feed conversion ratio, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, eosinophils, monocytes, albumin, alanine aminotransferase, aspartate aminotransferase and lysozyme activity between treatments (P > 0.05). The group fed 50 mg kg–1 Fe-NPs showed a significant difference in the contents of red and white blood cells, neutrophils, and total protein, in respiratory burst activity, and total immunoglobulin level (P < 0.05); the diet caused the least negative effect on the fish liver. After 8 weeks, survival rates of 76.67, 90.00, and 93.33% were recorded in groups that received 25, 50, and 100 mg kg–1 Fe-NPs of feed, respectively, compared to 66.67% survivals in the control. These results indicated that Fe-NPs at a level of 50 mg kg–1 improved the welfare and survival of stellate sturgeon juveniles and had no negative effect on the fish liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Akter, N., Alam, Md.J., Jewel, Md.A.S., et al., Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfish Clarias batrachus (Linnaeus, 1758), Int. J. Fish. Aquat. Stud., 2018, vol. 6, pp. 371–377.

    Google Scholar 

  2. Amar, C.E., Kiron, V., Satoh, S., et al., Effect of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss, Fish. Sci., 2000, vol. 66, pp. 1068–1075. https://doi.org/10.1046/j.1444-2906.2000.00170.x

    Article  CAS  Google Scholar 

  3. Andersen, F., Lorentzen, M., Waagbø, R., and Maage, A., Bioavailability and interactions with other micronutrients of three dietary iron sources in Atlantic salmon, Salmo salar, smolts, Aquacult. Nutr., 1997, vol. 3, pp. 239–346. https://doi.org/10.1046/j.1365-2095.1997.00096.x

    Article  CAS  Google Scholar 

  4. Andersen, F., Maage, A., and Julshamn, K., An estimation of dietary iron requirement of Atlantic salmon, Salmo salar L., parr, Aquacult. Nutr., 1996, vol. 2, pp. 41–47. https://doi.org/10.1111/j.1365-2095.1996.tb00006.x

    Article  CAS  Google Scholar 

  5. Anisworth, A.J., Fish granulocytes: Morphology, distribution, and function, Annu. Rev. Fish Dis., 1992, vol. 2, pp. 123–148. https://doi.org/10.1016/0959-8030(92)90060-B

    Article  Google Scholar 

  6. Official Methods of Analysis of AOAC International, 18th ed., Gaithersburg, Md.: Assoc. of Official Analytical Chemists, 2005.

  7. Bazari Moghaddam, S., Haghighi, M., Sharif Rohani, M., et al., The effects of different levels of Aloe vera extract on some of the hematological and non-specific immune parameters in Siberian sturgeon (Acipenser baerii), Iran. J. Fish. Sci., 2017, vol. 16, pp. 1234–1247.

    Google Scholar 

  8. Behera, T., Swain, P., Rangacharulu, P.V., and Samantha, M., Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H., Appl. Nanosci., 2014, vol. 4, pp. 687–694. https://doi.org/10.1007/s13204-013-0251-8

    Article  CAS  Google Scholar 

  9. Beisel, W.R., Single nutrients and immunity, Am. J. Clin. Nutr., 1982, vol. 35, pp. 417–468.

    Article  CAS  Google Scholar 

  10. Bekcan, S., Dogankaya, L., and Cakirogullari, G.C., Growth and body composition of European catfish (Silurus glanis L.) fed diet containing different percentages of protein, Isr. J. Aquacult., 2006, vol. 58, pp. 137–142.

    Google Scholar 

  11. Bhaskaram, P., Immunology of iron deficient subjects, in Nutrition and Immunology, Chandra, R.K., Ed., New York: Alan R. Liss, 1988, pp. 149–168.

    Google Scholar 

  12. inaii, M., Ghiasi, M., Farabi, S.M.V., et al., Biochemical and hemato-immunological parameters in juvenile beluga (Huso huso) following the diet supplemented with nettle (Urtica dioica), Fish Shellfish Immunol., 2014, vol. 36, pp. 46–51. 10.1016/j.fsi.2013.10.00

    Article  CAS  PubMed  Google Scholar 

  13. Blaxhall, P.C. and Daisley, K.W., Routine haematological methods for use with fish blood, J. Fish Biol., 1973, vol. 5, pp. 771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

    Article  Google Scholar 

  14. Bury, N.R., Walker, P.A., and Glover, C.N., Nutritive metal uptake in teleost fish, J. Exp. Biol., 2003, vol. 206, pp. 11–23.

    Article  CAS  Google Scholar 

  15. Ellis, A.E., Lysozyme assay in techniques in fish immunology, in Techniques in Fish Immunology, Stolen, J.S., Ed., Fair Haven, N.J.: SOS Publications, 1990, pp. 101–103.

    Google Scholar 

  16. El-Shenawy, A.M., Gad, D.M., and Yassin, Sh.A., Effect of iron nanoparticles on the development of fish farm feeds, Alexandria J. Vet. Sci., 2019, vol. 60, pp. 102–115. https://doi.org/10.5455/ajvs.28123

    Article  Google Scholar 

  17. Heidarieh, M., Soltani, M., Tamimi, A.H., and Toluei, M.H., Some immune responses of raw fiber (vitacel) on giant sturgeon (Huso huso), Iran Agric. Res., 2012, vol. 31, pp. 33–37.

    Google Scholar 

  18. Hosseini, S.H., Kamali, A., Yazadani, M.A., and Khara, H., Effect of different levels of iron sulfate on some hematological parameters of ship sturgeon, Acipenser nudiventris, Iran. J. Fish. Sci., 2019, vol. 18, pp. 163–172.

    Google Scholar 

  19. Jafari, F., Agh, N., Noori, F., et al., Effects of dietary soybean lecithin on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus), Fish Shellfish Immunol., 2018, vol. 80, pp. 487–496. https://doi.org/10.1016/j.fsi.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  20. Karimpour, M., Harlioglu, M.M., Khanipour, A.A., Abdolmalaki, S., and Aksu, O., Present status of fisheries in Iran, J. Fish. Sci., 2013, vol. 7, pp. 161–177.

    Google Scholar 

  21. Kawatsu, H., Studies on the anemia of fish-V. Dietary iron deficient anaemia in brook trout, Salvelinus fontinalis, Bull. Freshwater Fish. Res. Lab., 1972, vol. 22, pp. 59–67.

    Google Scholar 

  22. Khodorevskaya, R.P., Ruban, G.I., and Pavlov, D.S., Behavior, Migrations, Distribution and Stocks of Sturgeons in the Volga-Caspian basin, World Sturgeon Conservation Society Special Publication, no. 3, Rosenthal, H., Ed., Norderstedt, Germany: Books on Demand, 2009.

    Google Scholar 

  23. Lee, R.G., Foerster, J., Jukens, J., et al., Wintrobe’s Clinical Hematology, 10th ed., New York: Lippincott, 1998.

    Google Scholar 

  24. Levesque, H.M., Moon, T.W., Campbell, P.G.C., and Hontela, A., Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field, Aquat. Toxicol., 2002, vol. 60, pp. 257–267.

    Article  CAS  Google Scholar 

  25. Meyers, T.R., Fish Pathology Section Laboratory Manual, Special Publication, no. 12, Juneau, Alaska: Alaska Dep. Fish Game Commer. Fish. Div., 2009.

  26. Morera, D. and MacKenzie, S.A., Is there a direct role for erythrocytes in the immune response?, Vet. Res., 2011, vol. 42, art. ID 89. https://doi.org/10.1186/1297-9716-42-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murugan, K., Dinesh, D., Nataraj, D., et al., Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes, Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 10504–10514. https://doi.org/10.1007/s11356-017-0313-7

    Article  CAS  Google Scholar 

  28. Nazerian, S., Gholipour Kanani, H., Jafaryan, H.A., et al., Effect of purple coneflower (Echinacea purpora) and garlic (Allium satvium) as a supplemented dietary intake on some non-specific immune status, hematological parameters and growth performance in grower (Huso huso), Iran. J. Vet. Sci. Technol., 2016, vol. 8, pp. 29–39. https://doi.org/10.22067/veterinary.v8i2.37881

    Article  Google Scholar 

  29. Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater., 2009, vol. 8, pp. 543–557.

    Article  CAS  Google Scholar 

  30. Nobahar, Z., Gholipour-Kanani, H., Kakoolaki, Sh., and Jafaryan, H., Effect of garlic (Allium sativum) and nettle (Urtica dioica) on growth performance and hematological parameters of beluga (Huso huso), Iran. J. Aquat. Anim. Health, 2015, vol. 1, pp. 63–69.

    Article  Google Scholar 

  31. Onuegbu Chris, U., Singh, N.B., and Agarwal, A., Nanoparticles as feed supplement on growth behavior of cultured catfish (Clarias gariepinus) fingerlings, Mater. Today: Proc., 2018, vol. 5, pp. 9076–9081. https://doi.org/10.1016/j.matpr.2017.10.023

    Article  CAS  Google Scholar 

  32. Ostaszewska, T., Chojnacki, M., Kamaszewski, M., and Sawosz-Chwalibóg, E., Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 1621–1633. https://doi.org/10.1007/s11356-015-5391-9

    Article  CAS  Google Scholar 

  33. Prochorov, A.M., Pavlov, G.V., Okpattah Godwin, A.C., and Kaetanovich, A.V., The effect of nano-disperse iron on the biological parameters of fish, in 10th Foresight Conf. Mol. Nanotechnol., 2011. https://foresight.org/Conferences/MNT10/Abstracts/Prochorov1/index.html. Accessed October 15, 2020.

  34. Ringø, E., Zhou, Z., Vecino, J.L.G., et al., Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?, Aquacult. Nutr., 2016, vol. 22, pp. 219–282. https://doi.org/10.1111/anu.12346

  35. Saurabh, S. and Sahoo, P.K., Lysozyme: an important defence molecule of fish innate immune system, Aquacult. Res., 2008, vol. 39, pp. 223–239. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    Article  CAS  Google Scholar 

  36. Secombes, C.J., Isolation of salmonid macrophages and analysis of their killing activity, in Techniques in Fish Immunology, Stolen, J.S., Ed., Fair Haven, N.J.: SOS Publications, 1990, vol. 1, pp. 137–163.

    Google Scholar 

  37. Seiverd, C.E., Hematology for Medical Technologists, Philadelphia: Lea and Febiger, 1964.

    Google Scholar 

  38. Sharif Rohani, M., Haghighi, M., and Bazari Moghaddam, S., Study on nanoparticles of Aloe vera extract on growth performance, survival rate and body composition in Siberian sturgeon (Acipenser baerii), Iran. J. Fish. Sci., 2017, vol. 16, pp. 457–468.

    Google Scholar 

  39. Sharp, G.J. and Secombes, C.J., Observations on the killing of Aeromonas salmonicida by rainbow trout (Oncorhynchus mykiss, Walbaum) macrophages, Dis. Asian Aquacult., 1992, vol. 1, pp. 379–389.

    Google Scholar 

  40. Sharp, G.J. and Secombes, C.J., The role of reactive oxygen species in the killing of the bacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages, Fish Shellfish Immunol., 1993, vol. 3, pp. 119–129. https://doi.org/10.1006/fsim.1993.1013

    Article  Google Scholar 

  41. Shen, C.-C., Wang, C.-C., Liao, M.-H., and Jan, T.-R., A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice, Int. J. Nanomed., 2011, vol. 2011, no. 6, pp. 1229–1235.

    Google Scholar 

  42. Shrivastava, V., Lende, S.R., Baraiya, K.G., et al., Nano-technology in aquaculture feed: a review, in Proc. Natl. Conf. Innovative Res. Agric., Food Sci., Forerstry, Hortic., Aquacult., Anim. Sci., Biodiversity, Environ. Eng. Climate Change (AFHABEC-2015), pp. 107–110.

  43. Srinivasan, V., Saravana Bhavan, P., Rajkumar, G., et al., Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachium rosenbergii post-larvae, Int. J. Fish. Aquat. Stud., 2016, vol. 4, pp. 170–182.

    Google Scholar 

  44. Tacon, A.J., Nutritional Fish Pathology: Morphological Signs of Nutrient Deficiency and Toxicity in Farmed Fish, FAO Fish Technical Paper, no. 330, Rome: FAO, 1992.

  45. Vaglio, A. and Landriscina, C., Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication, Ecotoxicol. Environ. Saf., 1999, vol. 43, pp. 111–116. https://doi.org/10.1006/eesa.1999.1778

    Article  CAS  PubMed  Google Scholar 

  46. Wiegertjes, G.F., Stet, R.J.M., Parmentier, H.K., and van Muiswinkel, W.B., Immunogenetics of disease resistance in fish: A comparative approach, Dev. Comp. Immunol., 1996, vol. 20, pp. 365–381.

    Article  CAS  Google Scholar 

  47. Witeska, M., Erythrocytes in teleost fishes: a review, Zool. Ecol., 2013, vol. 23, pp. 275–281. https://doi.org/10.1080/21658005.2013.846963

    Article  Google Scholar 

  48. Yazdanparast, T., Sharifpour, I., Soltani, M., and Esfahani Hamed, K., Evaluation of silver retention in different organs of zebrafish (Danio rerio) fed diet supplemented with silver nanoparticles, Int. J. Eng. Res., 2016, vol. 5, pp. 269–274. https://doi.org/10.17950/ijer/v5s4/410

    Article  CAS  Google Scholar 

  49. Yang, C.-H., Kung, T.-A., and Chen, P.-J., Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products, Environ. Pollut., 2019, vol. 252, part B, pp. 1920–1932. https://doi.org/10.1016/j.envpol.2019.05.154

  50. Zar, J.H., Biostatistical Analysis, Upper Saddle River, N.J.: Prentice-Hall, 2010.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Changizi.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, P., Changizi, R., Ghobadi, S. et al. Effect of Nano-Fe as Feed Supplement on Growth Performance, Survival Rate, Blood Parameters and Immune Functions of the Stellate Sturgeon (Acipenser stellatus). Russ J Mar Biol 46, 493–500 (2020). https://doi.org/10.1134/S1063074020310016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074020310016

Keywords:

Navigation