Skip to main content

Advertisement

Log in

Bridging the gap between rubbers and plastics: a review on thermoplastic polyolefin elastomers

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermoplastic elastomers (TPE) are studied for their unique properties of being easily processes and recycled. This paper focuses on the wide scope of thermoplastic polyolefin elastomers (TPO/TPE-O) which is one of the major classes of TPE. The performance of TPO is the cumulative effect of polyolefins and rubbers with the ease of processing due to the presence of thermoplastics. The study focuses on the classification of TPO, their routes of synthesis, composites, applications, and its impact on environment. The mechanical blending of polyolefins and conventional rubber was carried out to manufacture TPO. In further developments, the polyolefin elastomers (POE) were synthesized by copolymerization techniques to overcome the drawback of mechanical blending techniques. Environment-friendly blends of TPO are synthesized using industrial and municipal waste which includes scrap rubber tires, marble waste-filled polypropylene, computer body waste, etc. This technology will help in reducing the issue of landfills. The composites of TPO have been studied using different types of fillers which may be synthetic or bio-based. These include talc, carbon black, carbon nanotubes (CNT), Kenaf fiber, pineapple leaf fiber, etc. TPO have found their use in encapsulation, in electrical insulation, roofing, medical devices, and the automobile industry. Also, impact of using TPOs on environment is discussed here qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bendjaouahdou C, Bensaad S (2018) Aging studies of a polypropylene and natural rubber blend. Int J Ind Chem 9:345–352. https://doi.org/10.1007/s40090-018-0163-2

    Article  CAS  Google Scholar 

  2. Öksüz M, Eroǧlu M (2005) Effect of the elastomer type on the microstructure and mechanical properties of polypropylene. J Appl Polym Sci 98:1445–1450. https://doi.org/10.1002/app.22271

    Article  CAS  Google Scholar 

  3. Salmah H, Ismail H (2008) The effect of filler loading and maleated polypropylene on properties of rubberwood filled polypropylene/natural rubber composites. J Reinf Plast Compos 27:1867–1876. https://doi.org/10.1177/0731684407081382

    Article  CAS  Google Scholar 

  4. Spontak RJ, Patel NP (2000) Thermoplastic elastomers: fundamentals and applications. Curr Opin Coll Interface Sci 5:333–340. https://doi.org/10.1016/s1359-0294(00)00070-4

    Article  Google Scholar 

  5. Grady B, Cooper S (2005) Thermoplastic Elastomers. In: Mark JE, Burak Erman FRE (eds) The Science and Technology of Rubber, 3rd edn. Elsevier Academic Pres, pp 555–612

  6. Dung NT, Hanh LTM, Lan PT et al (2018) Properties of polymer blends based on devulcanized waste rubber powder (d-WRP)/EPDM/P. Vietnam J Chem 56:237–243. https://doi.org/10.1002/vjch.201800020

    Article  CAS  Google Scholar 

  7. Amin S, Amin M (2011) Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Rev Adv Mater Sci 29:15–30

    CAS  Google Scholar 

  8. Drobny JG (2007) Handbook of thermoplastic elastomers. William Andrew Inc, Newyork

    Google Scholar 

  9. Holden G, Hans Rytger Kricheldorf RPQ (2004) Thermoplastic elastomers. Hanser Publications, Munich

    Google Scholar 

  10. Ciesielski A (1999) The basic rubber compound. In: An introduction to rubber technology. Rapra Techonology Limited, United Kingdom, pp 31–48

  11. Yehia AA (2004) Recycling of rubber waste. Polym-Plast Technol Eng 43:1735–1754. https://doi.org/10.1081/PPT-200040086

    Article  CAS  Google Scholar 

  12. Yasar M, Bayram G, Celebi H (2015) Effect of carbon black and/or elastomer on thermoplastic elastomer-based blends and composites. AIP Conf Proc. https://doi.org/10.1063/1.4918493

    Article  Google Scholar 

  13. Lee H, Kim DH, Son Y (2007) Effect of octene content in poly(ethylene-co-1-octene) on the properties of poly(propylene)/poly(ethylene-co-1-octene) blends. J Appl Polym Sci 103:1133–1139. https://doi.org/10.1002/app.24644

    Article  CAS  Google Scholar 

  14. Fasce LA, Pettarin V, Marano C et al (2008) Biaxial yielding of polypropylene/elastomeric polyolefin blends: effect of elastomer content and thermal annealing. Polym Eng Sci 48:1414–1423. https://doi.org/10.1002/pen.21107

    Article  CAS  Google Scholar 

  15. Keskin R, Adanur S (2011) Improving toughness of polypropylene with thermoplastic elastomers in injection molding. Polym-Plast Technol Eng 50:20–28. https://doi.org/10.1080/03602559.2010.512344

    Article  CAS  Google Scholar 

  16. Yang J, Zhang Y, Zhang Y (2003) Brittle-ductile transition of PP/POE blends in both impact and high speed tensile tests. Polym (Guildf) 44:5047–5052. https://doi.org/10.1016/S0032-3861(03)00438-5

    Article  CAS  Google Scholar 

  17. Zebarjad SM, Sajjadi SA, Tahani M (2006) Modification of fracture toughness of isotactic polypropylene with a combination of EPR and CaCO3 particles. J Mater Process Technol 175:446–451. https://doi.org/10.1016/j.jmatprotec.2005.04.043

    Article  CAS  Google Scholar 

  18. Das T, Roy S (2015) Heat sensing Thermoplastic Elastomer Based on Polyolefins for Encapsulation Applications. Thermoplast Elastom-Synth Appl. https://doi.org/10.5772/61691

    Article  Google Scholar 

  19. Dharia A (2006) Thermoformable thermoplastic olefin (TPO) blends. In: Annual Technical Conference-ANTEC, Conference Proceedings. pp 55–59

  20. Risch B, Tatat O (2001) Flexible thermoplastic polyolefin elastomers for buffering transmission elemenlets in a telecommunications cable

  21. Xiang F, Wang H, Yao X (2007) Dielectric properties of SrTiO3/POE flexible composites for microwave applications. J Eur Ceram Soc 27:3093–3097. https://doi.org/10.1016/j.jeurceramsoc.2006.11.034

    Article  CAS  Google Scholar 

  22. Hanhi K, Poikelispaa M, Tirila HM (2007) Elastomeric materials. Tampere University of Technology, Finland

    Google Scholar 

  23. Abdullah I, Ahmad S, Sulaiman CS (1995) Blending of natural rubber with linear low-density polyethylene. J Appl Polym Sci 58:1125–1133. https://doi.org/10.1002/app.1995.070580706

    Article  CAS  Google Scholar 

  24. Tanrattanakul V, Udomkichdecha W (2001) Development of novel elastomeric blends containing natural rubber and ultra-low-density polyethylene. J Appl Polym Sci 82:650–660. https://doi.org/10.1002/app.1893

    Article  CAS  Google Scholar 

  25. Varghese S, Alex R, Kuriakose B (2004) Natural rubber-isotactic polypropylene thermoplastic blends. J Appl Polym Sci 92:2063–2068. https://doi.org/10.1002/app.20077

    Article  CAS  Google Scholar 

  26. Tanrattanakul V, Kosonmetee K, Laokijcfaaroen P (2009) Polypropylene/natural rubber thermoplastic elastomer: effect of phenolic resin as a vulcanizing agent on mechanical properties and morphology. J Appl Polym Sci 112:3267–3275. https://doi.org/10.1002/app.29816

    Article  CAS  Google Scholar 

  27. Mohamad N, Zainol NS, Rahim FF et al (2013) Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Eng 68:439–445. https://doi.org/10.1016/j.proeng.2013.12.204

    Article  CAS  Google Scholar 

  28. Thomas S, George A (1992) Dynamic mechanical properties of thermoplastic elastomers from blends of polypropylene with copolymers of ethylene with vinyl acetate. Eur Polym J 28:1451–1458. https://doi.org/10.1016/0014-3057(92)90291-9

    Article  CAS  Google Scholar 

  29. Kim BC, Hwang SS, Lim KY, Yoon KJ (2000) Toughening of PP/EPDM blend by compatibilization. J Appl Polym Sci 78:1267–1274. https://doi.org/10.1002/1097-4628(20001107)78:6%3c1267::AID-APP130%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  30. Ruksakulpiwat Y, Sridee J, Suppakarn N, Sutapun W (2009) Improvement of impact property of natural fiber-polypropylene composite by using natural rubber and EPDM rubber. Compos Part B Eng 40:619–622. https://doi.org/10.1016/j.compositesb.2009.04.006

    Article  CAS  Google Scholar 

  31. Ruksakulpiwat Y, Suppakarn N, Sutapun W, Thomthong W (2007) Vetiver-polypropylene composites: physical and mechanical properties. Compos Part A Appl Sci Manuf 38:590–601. https://doi.org/10.1016/j.compositesa.2006.02.006

    Article  CAS  Google Scholar 

  32. Dharmarajan N, Kaufman LG (1998) High flow Tpo compounds containing branched EPDM modifiers. Rubber Chem Technol 71:778–794. https://doi.org/10.5254/1.3538504

    Article  CAS  Google Scholar 

  33. López-Manchado MA, Kenny JM, Quijada R, Yazdani-Pedram M (2001) Effect of grafted PP on the properties of thermoplastic elastomers based on PP-EPDM blends. Macromol Chem Phys 202:1909–1916. https://doi.org/10.1002/1521-3935(20010601)202:9%3c1909::AID-MACP1909%3e3.0.CO;2-N

    Article  Google Scholar 

  34. Chatterjee K, Naskar K (2007) Development of thermoplastic elastomers based on maleated ethylene propylene rubber (m-EPM) and polypropylene (PP) by dynamic vulcanization. Express Polym Lett 1:527–534. https://doi.org/10.3144/expresspolymlett.2007.75

    Article  CAS  Google Scholar 

  35. Soares BG, Santos DM, Sirqueira AS (2008) A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends. Express Polym Lett 2:602–613. https://doi.org/10.3144/expresspolymlett.2008.72

    Article  CAS  Google Scholar 

  36. Soares BG, Freitas JB, Silva AA, Sirqueira AS (2019) Thermoplastic vulcanizates based on dynamically vulcanized polypropylene/carboxylated nitrile rubber blends. Rubber Chem Technol 92:546–557. https://doi.org/10.5254/rct.19.81480

    Article  CAS  Google Scholar 

  37. Guseynova ZN, Kakhramanov NT, Mamedov BA et al (2019) Thermoelastoplastics based on a mixture of thermoplastic polyolefins and butyl rubber. Inorg Mater Appl Res 10:381–386. https://doi.org/10.1134/S2075113319020187

    Article  Google Scholar 

  38. Jalali-Arani A, Katbab AA, Nazockdast H (2003) Preparation of thermoplastic elastomers based on silicone rubber and polyethylene by thermomechanical reactive blending: effects of polyethylene structural parameters. J Appl Polym Sci 90:3402–3408. https://doi.org/10.1002/app.13064

    Article  CAS  Google Scholar 

  39. Stelescu DM, Airinei A, Homocianu M et al (2013) Structural characteristics of some high density polyethylene/EPDM blends. Polym Test 32:187–196. https://doi.org/10.1016/j.polymertesting.2012.10.010

    Article  CAS  Google Scholar 

  40. Abitha VK, Rane AV (2014) A review on EPDM/polyolefinic blends and composites. Res Rev Polym 5:102–114

    Google Scholar 

  41. Grigoryeva OP, Fainleib AM, Tolstov AL et al (2005) Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. J Appl Polym Sci 95:659–671. https://doi.org/10.1002/app.21177

    Article  CAS  Google Scholar 

  42. Jose J, Satapathy S, Nag A, Nando GB (2007) Modification of waste polypropylene with waste rubber dust from textile cot industry and its characterization. Process Saf Environ Prot 85:318–326. https://doi.org/10.1205/psep06045

    Article  CAS  Google Scholar 

  43. Ahmed K (2015) Eco-thermoplastic elastomer blends developed by compatibilizing chlorinated polyethylene into industrial-waste-filled polypropylene/acrylonitrile butadiene rubber system. Arab J Sci Eng 40:2929–2936. https://doi.org/10.1007/s13369-014-1561-1

    Article  CAS  Google Scholar 

  44. Matei E, Râpǎ M, Andras ÁA et al (2017) Recycled polypropylene improved with thermoplastic elastomers. Int J Polym Sci. https://doi.org/10.1155/2017/7525923

    Article  Google Scholar 

  45. Wang YH, Chen YK, Rodrigue D (2018) Production of thermoplastic elastomers based on recycled pe and ground tire rubber: morphology, mechanical properties and effect of compatibilizer addition. Int Polym Process 33:525–534. https://doi.org/10.3139/217.3544

    Article  CAS  Google Scholar 

  46. Sienkiewicz M, Janik H, Borzędowska-Labuda K, Kucińska-Lipka J (2017) Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J Clean Prod 147:560–571. https://doi.org/10.1016/j.jclepro.2017.01.121

    Article  CAS  Google Scholar 

  47. Luo T, Isayev AI (1998) Rubber/plastic blends based on devulcanized ground tire rubber. J Elastom Plast 30:133–160. https://doi.org/10.1177/009524439803000204

    Article  CAS  Google Scholar 

  48. Naskar AK, Bhowmick AK, De SK (2001) Thermoplastic elastomeric composition based on ground rubber tire. Polym Eng Sci 41:1087–1098. https://doi.org/10.1002/pen.10809

    Article  CAS  Google Scholar 

  49. Egodage SM, Harper JF, Walpalage S (2012) Effect of maleimide curing on mechanical properties of ground tyre rubber/waste polypropylene blends. Plast Rubber Compos 41:332–340. https://doi.org/10.1179/1743289811Y.0000000042

    Article  CAS  Google Scholar 

  50. Hassan MM, Aly RO, Abdel Aal SE et al (2013) Mechanochemical devulcanization and gamma irradiation of devulcanized waste rubber/high density polyethylene thermoplastic elastomer. J Ind Eng Chem 19:1722–1729. https://doi.org/10.1016/j.jiec.2013.02.012

    Article  CAS  Google Scholar 

  51. Qin J, Ding H, Wang X et al (2008) Blending LLDPE and ground rubber tires. Polym-Plast Technol Eng 47:199–202. https://doi.org/10.1080/03602550701816217

    Article  CAS  Google Scholar 

  52. Kakroodi AR, Rodrigue D (2013) Highly filled thermoplastic elastomers from ground tire rubber, maleated polyethylene and high density polyethylene. Plast Rubber Compos 42:115–122. https://doi.org/10.1179/1743289812Y.0000000042

    Article  CAS  Google Scholar 

  53. Jacob C, De PP, Bhowmick AK, De SK (2001) Recycling of EPDM waste. II. Replacement of virgin rubber by ground EPDM vulcanizate in EPDM/PP thermoplastic elastomeric composition. J Appl Polym Sci 82:3304–3312. https://doi.org/10.1002/app.2189

    Article  CAS  Google Scholar 

  54. Al-Malaika S, Amir EJ (1989) Thermoplastic elastomers: Part III-Ageing and mechanical properties of natural rubber-reclaimed rubber/polypropylene systems and their role as solid phase dispersants in polypropylene/polyethylene blends. Polym Degrad Stab 26:31–41. https://doi.org/10.1016/0141-3910(89)90026-8

    Article  CAS  Google Scholar 

  55. Rajeev RS, De SK (2004) Thermoplastic elastomers based on waste rubber and plastics. Rubber Chem Technol 77:569–578. https://doi.org/10.5254/1.3547837

    Article  CAS  Google Scholar 

  56. Lievana E, Karger-Kocsis J (2004) Use of ground tyre rubber (GTR) in thermoplastic polyolefin elastomer compositions. Prog Rubber, Plast Recycl Technol 20:1–10. https://doi.org/10.1177/147776060402000101

    Article  CAS  Google Scholar 

  57. Zhang SL, Xin ZX, Zhang ZX, Kim JK (2009) Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Manag 29:1480–1485. https://doi.org/10.1016/j.wasman.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  58. Chum SP, Silvis HC, Kao CI (1994) New polyolefin based elastomers for tpo impact modification. SAE Tech Pap. https://doi.org/10.4271/940435

    Article  Google Scholar 

  59. Dow Chemicals, "ENGAGETM XLT 8677," JUNE. 2019

  60. Chem LG, "LuceneTM LC165," FEB.2019

  61. Chem LG, "Lucene TM LC100," FEB 2019

  62. Dow, "ENGAGE TM 8842," "AUG 2020

  63. DowDupont, "Dow Engage ® 8440 Polyolefin Elastomer," OCT.2020

  64. LyondellBasell, "LyondellBasell HifaxT CA287AHF Thermoplastic Polyolefin Elastomer," AUG.2014s

  65. Elastocon TPE Technologies, "Elastocon TPE Technologies Elastocon ® 2855 Thermoplastic Elastomer," OCT.2014

  66. RTP Company, "RTP Company RTP 2800B-40D Thermoplastic Vulcanizate Elastomer ( TPV ) 40 Shore D," JUNE 2016

  67. Technor Apex, "Teknor Apex Telcar ® TL-2365A Thermoplastic Polyolefin Elastomer," AUG.2014

  68. Mitsui Chemicals, "Mitsui NOTIOT PN-2070 Nano-crystal Structure Controlled Elastomer," DEC.2014

  69. Da Silva ALN, Tavares MIB, Politano DP et al (1997) Polymer blends based on polyolefin elastomer and polypropylene. J Appl Polym Sci 66:2005–2014. https://doi.org/10.1002/(sici)1097-4628(19971205)66:10%3c2005::aid-app17%3e3.0.co;2-2

    Article  Google Scholar 

  70. Lotti C, Correa CA, Canevarolo SV (2000) Mechanical and morphological characterization of polypropylene toughened with olefinic elastomer. Mater Res 3:37–44. https://doi.org/10.1590/s1516-14392000000200007

    Article  CAS  Google Scholar 

  71. Rocha MCG, Leyva ME, De Oliveira MG (2014) Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire. Polimeros 24:23–29. https://doi.org/10.4322/polimeros.2014.033

    Article  CAS  Google Scholar 

  72. Maani A, Blais B, Heuzey M-C, Carreau PJ (2012) Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends. J Rheol (N Y N Y) 56:625–647. https://doi.org/10.1122/1.3700966

    Article  CAS  Google Scholar 

  73. Bu H, Qiu W, Tan Z et al (2015) Study on toughening of poly(4-methyl-1-pentene) with various thermoplastic elastomers. J Thermoplast Compos Mater 28:1334–1342. https://doi.org/10.1177/0892705714526915

    Article  CAS  Google Scholar 

  74. Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer (Guildf) 44:7495–7504. https://doi.org/10.1016/j.polymer.2003.08.043

    Article  CAS  Google Scholar 

  75. Khonakdar HA, Jafari SH, Hesabi MN (2015) Miscibility analysis, viscoelastic properties and morphology of cyclic olefin copolymer/polyolefin elastomer (COC/POE) blends. Compos Part B Eng 69:111–119. https://doi.org/10.1016/j.compositesb.2014.09.034

    Article  CAS  Google Scholar 

  76. Tembhekar S, Maiti M, George JJ et al (2008) High strength - Low hardness thermoplastic elastomers from ethylene-butene copolymers and low density polyethylene. Rubber Chem Technol 81:60–76. https://doi.org/10.5254/1.3548198

    Article  CAS  Google Scholar 

  77. Fasihi M, Mansouri H (2016) Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.44068

    Article  CAS  Google Scholar 

  78. Ho CH, Wang CH, Lin CI, Der Lee Y (2008) Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polym (Guildf) 49:3902–3910. https://doi.org/10.1016/j.polymer.2008.06.054

    Article  CAS  Google Scholar 

  79. Kim TK, Kim BK, Lee SY et al (2010) Thermoplastic polyurethane elastomer/thermoplastic polyolefin elastomer blends compatibilized with a polyolefinic segment in TPU. Macromol Res 18:177–184. https://doi.org/10.1007/s13233-009-0165-1

    Article  CAS  Google Scholar 

  80. Olabisi O, Consulting I (1979) Polymer-polymer miscibility. Academic press Inc, Cambridge

    Google Scholar 

  81. Blends NPE, The OF, Florida OF et al. (2000) Novel polyolefin elastomer-based blends and their applications

  82. Walton KL (2004) Metallocene catalyzed ethylene/alpha olefin copolymers used in thermoplastic elastomers. Rubber Chem Technol 77:552–568. https://doi.org/10.5254/1.3547836

    Article  CAS  Google Scholar 

  83. Wilmington D, Midland MJ Dow Chemical Elects to Exercise Option Related to DuPont Dow Elastomers Joint Venture

  84. Dong JY, Hong H, Chung TC et al (2003) Synthesis of linear polyolefin elastomers containing divinylbenzene units and applications in cross-linking, functionalization, and graft reactions. Macromolecules 36:6000–6009. https://doi.org/10.1021/ma021749s

    Article  CAS  Google Scholar 

  85. He Z, Liang Y, Yang W et al (2015) Random hyperbranched linear polyethylene: one step production of thermoplastic elastomer. Polym (Guildf) 56:119–122. https://doi.org/10.1016/j.polymer.2014.11.061

    Article  CAS  Google Scholar 

  86. Liu W, Zhang X, Bu Z et al (2015) Elastomeric properties of ethylene/1-octene random and block copolymers synthesized from living coordination polymerization. Polym (Guildf) 72:118–124. https://doi.org/10.1016/j.polymer.2015.07.019

    Article  CAS  Google Scholar 

  87. Ohtaki H, Deplace F, Vo GD et al (2015) Allyl-terminated Polypropylene macromonomers: a route to polyolefin elastomers with excellent elastic behavior. Macromolecules 48:7489–7494. https://doi.org/10.1021/acs.macromol.5b01975

    Article  CAS  Google Scholar 

  88. Fang J, Sui X, Li Y, Chen C (2018) Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym Chem 9:4143–4149. https://doi.org/10.1039/c8py00725j

    Article  CAS  Google Scholar 

  89. Leone G, Mauri M, Pierro I et al (2016) Polyolefin thermoplastic elastomers from 1-octene chain-walking polymerization. Polym (Guildf) 100:37–44. https://doi.org/10.1016/j.polymer.2016.08.009

    Article  CAS  Google Scholar 

  90. O’Connor KS, Watts A, Vaidya T et al (2016) Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: synthesis, structure, and properties. Macromolecules 49:6743–6751. https://doi.org/10.1021/acs.macromol.6b01567

    Article  CAS  Google Scholar 

  91. Pierro I, Leone G, Zanchin G et al (2017) Polyolefin thermoplastic elastomers from 1-octene copolymerization with 1-decene and cyclopentene. Eur Polym J 93:200–211. https://doi.org/10.1016/j.eurpolymj.2017.05.044

    Article  CAS  Google Scholar 

  92. Song X, Cao L, Tanaka R et al (2019) Optically transparent functional polyolefin elastomer with excellent mechanical and thermal properties. ACS Macro Lett 8:299–303. https://doi.org/10.1021/acsmacrolett.9b00005

    Article  CAS  Google Scholar 

  93. Yang F, Wang X, Ma Z et al (2020) Copolymerization of propylene with higher α-olefins by a pyridylamidohafnium catalyst: an effective approach to polypropylene-based elastomer. Polym (Basel). https://doi.org/10.3390/polym12010089

    Article  Google Scholar 

  94. Roland CM (2016) Reinforcement of elastomers. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/b978-0-12-803581-8.02163-9

    Article  Google Scholar 

  95. Mir SH, Nagahara LA, Thundat T et al (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156. https://doi.org/10.1149/2.0191808jes

    Article  CAS  Google Scholar 

  96. Ma Q, Su X, Tibbenham PC et al (2010) Mechanical properties of thermoplastic olefin composites: effect of fillers content, strain rate and temperature. Polym-Plast Technol Eng 49:121–127. https://doi.org/10.1080/03602550903283125

    Article  CAS  Google Scholar 

  97. Browning R, Lim GT, Moyse A et al (2006) Effects of slip agent and talc surface-treatment on the scratch behavior of thermoplastic olefins. Polym Eng Sci 46:601–608. https://doi.org/10.1002/pen.20507

    Article  CAS  Google Scholar 

  98. Ghanbari A, Behzadfar E, Arjmand M (2019) Properties of talc filled reactor-made thermoplastic polyolefin composites. J Polym Res 26:10–14. https://doi.org/10.1007/s10965-019-1902-6

    Article  CAS  Google Scholar 

  99. Sangwichien C, Sumanatrakool P, Patarapaiboolchai O (2008) Effect of filler loading on curing characteristics and mechanical properties of thermoplastic vulcanizate. Chiang Mai J Sci 35:141–149

    CAS  Google Scholar 

  100. Yamauchi K, Akasaka S, Hasegawa H et al (2005) Structural study of natural rubber thermoplastic elastomers and their composites with carbon black by small-angle neutron scattering and transmission electron microscopy. Compos Part A Appl Sci Manuf 36:423–429. https://doi.org/10.1016/j.compositesa.2004.10.012

    Article  CAS  Google Scholar 

  101. Mehta S, Mirabella FM, Rufener K, Bafna A (2004) Thermoplastic olefin/clay nanocomposites: morphology and mechanical properties. J Appl Polym Sci 92:928–936. https://doi.org/10.1002/app.13693

    Article  CAS  Google Scholar 

  102. Mishra JK, Ryou JH, Kim GH et al (2004) Preparation and properties of a new thermoplastic vulcanizate (TPV)/organoclay nanocomposite using maleic anhydride functionalized polypropylene as a compatibilizer. Mater Lett 58:3481–3485. https://doi.org/10.1016/j.matlet.2004.07.003

    Article  CAS  Google Scholar 

  103. Mishra JK, Hwang KJ, Ha CS (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polym (Guildf) 46:1995–2002. https://doi.org/10.1016/j.polymer.2004.12.044

    Article  CAS  Google Scholar 

  104. Austin JR, Kontopoulou M (2006) Effect of organoclay content on the rheology, morphology, and physical properties of polyolefin elastomers and their blends with polypropylene. Polym Eng Sci 46:1491–1501. https://doi.org/10.1002/pen.20622

    Article  CAS  Google Scholar 

  105. Lee HS, Fasulo PD, Rodgers WR, Paul DR (2006) TPO based nanocomposites. Part 2. Thermal expansion behavior. Polym (Guildf) 47:3528–3539. https://doi.org/10.1016/j.polymer.2006.03.016

    Article  CAS  Google Scholar 

  106. Vaia RA, Vasudevan S, Krawiec W et al (1995) New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 7:154–156. https://doi.org/10.1002/adma.19950070210

    Article  CAS  Google Scholar 

  107. Sinha Ray S, Yamada K, Okamoto M et al (2003) New polylactide/layered silicate nanocomposites. 3. High-perform Biodegradable Mater. Chem Mater 15:1456–1465. https://doi.org/10.1021/cm020953r

    Article  CAS  Google Scholar 

  108. Lee SH, Kontopoulou M, Park CB (2010) Effect of nanosilica on the co-continuous morphology of polypropylene/polyolefin elastomer blends. Polym (Guildf) 51:1147–1155. https://doi.org/10.1016/j.polymer.2010.01.018

    Article  CAS  Google Scholar 

  109. Liu Y, Kontopoulou M (2007) Effect of filler partitioning on the mechanical properties of TPO/nanosilica composites. J Vinyl Addit Technol 13:147–150. https://doi.org/10.1002/vnl.20118

    Article  CAS  Google Scholar 

  110. Maani A, Carreau PJ (2016) Rheological and morphological properties of thermoplastic olefin blends containing nanosilica. J Nonnewton Fluid Mech 233:95–106. https://doi.org/10.1016/j.jnnfm.2016.01.017

    Article  CAS  Google Scholar 

  111. Tjong SC, Liao CZ (2010) Mechanical and fracture behaviors of elastomer-rich thermoplastic polyolefin/ SiCp nanocomposites. J Nanomater. https://doi.org/10.1155/2010/327973

    Article  Google Scholar 

  112. Hui S (2018) Morphological and mechanical properties of LDPE/EVA based TPE: effect of both modified and unmodified nanosilica. Int J Res Appl Sci Eng Technol 6:441–447. https://doi.org/10.22214/ijraset.2018.2092

    Article  Google Scholar 

  113. Zhao ZY, Dong LP, Chen L, Wang YZ (2015) Morphology development of PP/POE blends with high loading of magnesium hydroxide. RSC Adv 5:17967–17975. https://doi.org/10.1039/c5ra00450k

    Article  CAS  Google Scholar 

  114. Zhou Y, He J, Hu J, Dang B (2016) Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.42863

    Article  CAS  Google Scholar 

  115. Saikrasun S, Amornsakchai T, Sirisinha C et al (1999) Kevlar reinforcement of polyolefin-based thermoplastic elastomer. Polym (Guildf) 40:6437–6442. https://doi.org/10.1016/S0032-3861(98)00853-2

    Article  CAS  Google Scholar 

  116. López-Manchado MA, Arroyo M (2001) Effect of the incorporation of pet fibers on the properties of thermoplastic elastomer based on PP/elastomer blends. Polym (Guildf) 42:6557–6563. https://doi.org/10.1016/S0032-3861(01)00127-6

    Article  Google Scholar 

  117. Kmetty Á, Bárány T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol 73:72–80. https://doi.org/10.1016/j.compscitech.2012.09.017

    Article  CAS  Google Scholar 

  118. Viet CX, Ismail H, Rashid AA, Takeichi T (2012) Kenaf powder filled recycled high density polyethylene/natural rubber biocomposites : The effect of filler content. J Integr Eng 4:22–25

    Google Scholar 

  119. Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286. https://doi.org/10.1016/S0266-3538(03)00099-X

    Article  CAS  Google Scholar 

  120. Cao XV, Ismail H, Rashid AA et al (2011) Mechanical properties and water absorption of kenaf powder filled recycled high density polyethylene/natural rubber biocomposites using mape as a compatibilizer. BioResources 6:3260–3271. https://doi.org/10.15376/biores.6.3.3260-3271

    Article  CAS  Google Scholar 

  121. Naik JB, Mishra S (2007) Esterification effect of maleic anhydride on swelling properties of natural fiber/high density polyethylene composites. J Appl Polym Sci 106:2571–2574. https://doi.org/10.1002/app.25329

    Article  CAS  Google Scholar 

  122. Sameni JK, Ahmad SH, Zakaria S (2003) Mechanical peoperties of Kenaf-thermoplastic natural rubber composites. Polym-Plast Technol Eng 42:345–355. https://doi.org/10.1081/PPT-120017956

    Article  CAS  Google Scholar 

  123. Anuar H, Ahmad SH, Rasid R et al (2008) Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 107:4043–4052. https://doi.org/10.1002/app.27441

    Article  CAS  Google Scholar 

  124. Anuar H, Zuraida A (2011) Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Compos Part B Eng 42:462–465. https://doi.org/10.1016/j.compositesb.2010.12.013

    Article  CAS  Google Scholar 

  125. Miedzianowska J, Masłowski M, Strzelec K (2019) Thermoplastic elastomer biocomposites filled with cereal straw fibers obtained with different processing methods-preparation and properties. Polym (Basel). https://doi.org/10.3390/polym11040641

    Article  Google Scholar 

  126. Kalapakdee A, Amornsakchai T (2014) Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: effects of fiber content and matrix orientation. Polym Test 37:36–44. https://doi.org/10.1016/j.polymertesting.2014.04.008

    Article  CAS  Google Scholar 

  127. Matonis VA (1969) The interfacial stresses in particulate composite systems. Polym Eng Sci 9:100–104. https://doi.org/10.1002/pen.760090205

    Article  CAS  Google Scholar 

  128. Flandin L, Chang A, Nazarenko S et al (2000) Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. J Appl Polym Sci 76:894–905. https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6%3c894::AID-APP16%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  129. Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon N Y 47:1126–1134. https://doi.org/10.1016/j.carbon.2008.12.043

    Article  CAS  Google Scholar 

  130. Hemmati M, Narimani A, Shariatpanahi H et al (2011) Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer. Int J Polym Mater Polym Biomater 60:384–397. https://doi.org/10.1080/00914037.2010.531810

    Article  CAS  Google Scholar 

  131. Li T, Ma LF, Bao RY et al (2015) A new approach to construct segregated structures in thermoplastic polyolefin elastomers towards improved conductive and mechanical properties. J Mater Chem A 3:5482–5490. https://doi.org/10.1039/c5ta00314h

    Article  CAS  Google Scholar 

  132. Trivedi DC, Dhawan SK (1993) Antistatic applications of conducting polyaniline. Polym Adv Technol 4:335–340. https://doi.org/10.1002/pat.1993.220040503

    Article  CAS  Google Scholar 

  133. Kumar S, Lively B, Sun LL et al (2010) Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications. Carbon N Y 48:3846–3857. https://doi.org/10.1016/j.carbon.2010.06.050

    Article  CAS  Google Scholar 

  134. Pirsa S (2017) Chemiresistive gas sensors based on conducting polymers. Mater Sci Eng Concepts, Methodol Tools, Appl 1–3:543–574. https://doi.org/10.4018/978-1-5225-1798-6.ch022

    Article  Google Scholar 

  135. Huang YF, Chuang LC, Kannan AM, Lin CW (2009) Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications. J Power Sour 186:22–28. https://doi.org/10.1016/j.jpowsour.2008.09.072

    Article  CAS  Google Scholar 

  136. Dang ZM, Shehzad K, Zha JW et al (2011) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72:28–35. https://doi.org/10.1016/j.compscitech.2011.08.020

    Article  CAS  Google Scholar 

  137. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  138. Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:11–14. https://doi.org/10.1103/PhysRevLett.100.016602

    Article  CAS  Google Scholar 

  139. Tarawneh MA, Yu LJ, Tarawni MA et al (2015) High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J Eng 12:437–442. https://doi.org/10.1260/1708-5284.12.5.437

    Article  CAS  Google Scholar 

  140. Premphet-Sirisinha K, Preechachon I (2003) Changes in morphology and properties by grafting reaction in PP/EOR/CaCO3 ternary composites. J Appl Polym Sci 89:3557–3562. https://doi.org/10.1002/app.12544

    Article  CAS  Google Scholar 

  141. Ma CG, Mai YL, Rong MZ et al (2007) Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites. Compos Sci Technol 67:2997–3005. https://doi.org/10.1016/j.compscitech.2007.05.022

    Article  CAS  Google Scholar 

  142. Park NH, Kim DH, Kim KY et al (2013) Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym 14:2117–2121. https://doi.org/10.1007/s12221-013-2117-9

    Article  CAS  Google Scholar 

  143. Yang H, Lin Y, Zhu J, Wang F (2009) Electromagnetic properties and mechanical properties of Ni 0.8 Zn 0.2 Fe 2 O 4 /polyolefin elastomer composites for high-frequency applications. J Appl Polym Sci 114:3510–3514. https://doi.org/10.1002/app.30878

    Article  CAS  Google Scholar 

  144. Satapathy S, Nag A, Nando GB (2010) Thermoplastic elastomers from waste polyethylene and reclaim rubber blends and their composites with fly ash. Process Saf Environ Prot 88:131–141. https://doi.org/10.1016/j.psep.2009.12.001

    Article  CAS  Google Scholar 

  145. Yao W, Zhao Y, Wu K et al (2019) Effect of fly ash on the structure and properties of polyolefin elastomer/fly ash/polypropylene composites. Mater Res Express. https://doi.org/10.1088/2053-1591/aaed18

    Article  Google Scholar 

  146. Wang X, Feng N, Chang S et al (2012) Intumescent flame retardant TPO composites: flame retardant properties and morphology of the charred layer. J Appl Polym Sci 124:2071–2079. https://doi.org/10.1002/app.35253

    Article  CAS  Google Scholar 

  147. He W, Zhou Y, Chen X et al (2018) Novel intumescent flame retardant masterbatch prepared through different processes and its application in EPDM/PP thermoplastic elastomer: thermal stability, flame retardancy, and mechanical properties. Polym (Basel). https://doi.org/10.3390/polym11010050

    Article  Google Scholar 

  148. Liu M, Papageorgiou DG, Li S et al (2018) Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos Part A Appl Sci Manuf 110:84–92. https://doi.org/10.1016/j.compositesa.2018.04.014

    Article  CAS  Google Scholar 

  149. Bazant P, Sedlacek T, Kuritka I et al (2018) Synthesis and effect of hierarchically structured Ag-ZnO hybrid on the surface antibacterial activity of a propylene-based elastomer blends. Mater (Basel). https://doi.org/10.3390/ma11030363

    Article  Google Scholar 

  150. Markarian J (2004) Processing and recycling advantages drive growth in thermoplastic elastomers. Plast Addit Compd 6:22–25. https://doi.org/10.1016/S1464-391X(04)00301-0

    Article  Google Scholar 

  151. Dilaura RP (1985) Recent TPO advancements in exterior automotive applications. In: SAE Technical Papers. SAE International

  152. Bhattacharya AB, Chatterjee T, Naskar K (2020) Automotive applications of thermoplastic vulcanizates. J Appl Polym Sci 137:1–19. https://doi.org/10.1002/app.49181

    Article  CAS  Google Scholar 

  153. Banta P, Dammann M (2020) High gloss black replacing paint

  154. Ryntz R (2000) Paintable, surface-damage resistant reactor grade thermoplastic olefin (TPO)

  155. Abu-isa IA (2002) Fire Shield Material. In: SAE 2002 World Congress Detroit, Michigan

  156. Douglass DM, Wu CY (2003) Laser welding of polyolefin elastomers to thermoplastic polyolefin. ICALEO 2003-22nd Int Congr Appl Laser Electro-Optics, Congr Proc 608. Doi: https://doi.org/10.2351/1.5060070

  157. Kim SG, Leung SN, Park CB, Sain M (2011) The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chem Eng Sci 66:3675–3686. https://doi.org/10.1016/j.ces.2011.05.003

    Article  CAS  Google Scholar 

  158. Yeetsorn R, Ungtrakul T, Jariyakun K et al (2017) Thermoplastic vulcanizates/recycled polypropylene blend for automotive OEM. Key Eng Mater 757:29–34. https://doi.org/10.4028/www.scientific.net/KEM.757.29

    Article  Google Scholar 

  159. Du BX, Xu H, Li J, Li Z (2016) Space charge behaviors of PP/POE/ZnO nanocomposites for HVDC cables. IEEE Trans Dielectr Electr Insul. https://doi.org/10.1109/TDEI.2016.7736882

    Article  Google Scholar 

  160. Gao Y, Li J, Yuan Y et al (2018) Trap distribution and dielectric breakdown of isotactic polypropylene/propylene based elastomer with improved flexibility for DC cable insulation. IEEE Access 6:58645–58661. https://doi.org/10.1109/ACCESS.2018.2874826

    Article  Google Scholar 

  161. Copolymer A, Zhai J, Li W et al (2019) Space charge suppression of polyethylene induced by blending with ethylene-butyl acrylate copolymer. CSEE J Power Energy Syst 6:152–159. https://doi.org/10.17775/cseejpes.2019.01150

    Article  Google Scholar 

  162. Ismail NH, Mustapha M (2018) A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications. Polym Eng Sci 58:E36–E63. https://doi.org/10.1002/pen.24822

    Article  CAS  Google Scholar 

  163. Zhou Y, He J, Hu J et al (2015) Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications. IEEE Trans Dielectr Electr Insul 22:673–681. https://doi.org/10.1109/TDEI.2015.7076762

    Article  CAS  Google Scholar 

  164. Helal E, Pottier C, David E et al (2018) Polyethylene/thermoplastic elastomer/Zinc Oxide nanocomposites for high voltage insulation applications: dielectric, mechanical and rheological behavior. Eur Polym J 100:258–269. https://doi.org/10.1016/j.eurpolymj.2018.02.004

    Article  CAS  Google Scholar 

  165. Helal E, Demarquette NR, David E, Frechette M (2016) Evaluation of dielectric behavior of polyethylene/thermoplastic elastomer blends containing zinc oxide (ZnO) nanoparticles for high voltage insulation. 34th Electr Insul Conf EIC 2016 592–595. Doi: https://doi.org/10.1109/EIC.2016.7548672

  166. Chi X, Cheng L, Liu W et al (2018) Characterization of polypropylene modified by blending elastomer and nano-silica. Mater (Basel) 11:1–13. https://doi.org/10.3390/ma11081321

    Article  CAS  Google Scholar 

  167. Helsen JA, Jaecques SV, Van Humbeeck J, Simon JP (1993) Evaluation of an elastomer for biomedical use in load-bearing applications-Part I In vitro fatigue testing. J Mater Sci Mater Med 4:471–480. https://doi.org/10.1007/BF00120127

    Article  CAS  Google Scholar 

  168. Totakura N (2000) Medical devices fabricated from elastomeric alpha-olefins

  169. Cary K, Balck JRS (2010) Roofing membrane

  170. Weiss B, Barrett J (2012) Elements of sustainable roofing material

  171. Worthen W, Zidek S (2011) TPO roofing membrane with adhesive ready bottom layer

  172. Xing L, Taylor T (2004) Roofing membrane incorporating a central laminated structure

  173. Peng L (2004) Heat weldable roofing membrane

  174. Yang L, Nebesnak E (2006) Flexible polypropylene membrane

  175. Yang L (2007) Single ply thermoplastic membranes having superior heat seam pell strength and low temperature flexibility

  176. Xing L, Taylor T (2020) Colored roofing membrane with improved solar reflectance

  177. Wickramaarachchi WVWH, Walpalage S, Egodage SM (2020) Effect of particulate fillers on natural rubber/high-density polyethylene blends for roofing application. Polym Polym Compos. https://doi.org/10.1177/0967391120934615

    Article  Google Scholar 

  178. Yang H, Wang H, Xiang F, Yao X (2009) Multifunctional SrTiO3/NiZn ferrite/POE composites with eletromagnetic and flexible properties for RF applications. J Electroceramics 22:221–226. https://doi.org/10.1007/s10832-007-9368-z

    Article  CAS  Google Scholar 

  179. Youm JS, Kim JC, Yang KS (2012) Elastic property of polyolefin elastomer film cross linked by electron beam irradiation. Fibers Polym 13:1165–1169. https://doi.org/10.1007/s12221-012-1165-x

    Article  CAS  Google Scholar 

  180. Kashif M, Chang YW (2015) Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur Polym J 66:273–281. https://doi.org/10.1016/j.eurpolymj.2015.02.007

    Article  CAS  Google Scholar 

  181. Adhikari B, Maiti S (2000) Reclamation and recycling of waste rubber. Prog. Polym. Sci 25:909–948

    Article  CAS  Google Scholar 

  182. Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM (2006) Science and technology of rubber reclamation with special attention to NR-based waste latex products. Prog Polym Sci 31:811–834. https://doi.org/10.1016/j.progpolymsci.2006.08.003

    Article  CAS  Google Scholar 

  183. Ferrão P, Ribeiro P, Silva P (2008) A management system for end-of-life tyres: a Portuguese case study. Waste Manag 28:604–614. https://doi.org/10.1016/j.wasman.2007.02.033

    Article  PubMed  Google Scholar 

  184. Ramarad S, Khalid M, Ratnam CT et al (2015) Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog Mater Sci 72:100–140. https://doi.org/10.1016/j.pmatsci.2015.02.004

    Article  CAS  Google Scholar 

  185. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. https://doi.org/10.3390/recycling2040024

    Article  Google Scholar 

  186. Tanaka Y, Watanabe T, Okita T et al (2003) The technology to produce thermoplastic elastomer based on waste rubber. SAE Tech Pap. https://doi.org/10.4271/2003-01-0941

    Article  Google Scholar 

  187. Isayev A, Chen J, Tukachinsky A (1995) Novel ultrasonic technology for devulcanization of waste rubbers. Rubber Chem Technol 68(2):267–280

    Article  CAS  Google Scholar 

  188. Maynard LA, DeButts BL, Barone JR (2019) Mechanical and thermal properties of polyolefin thermoplastic elastomer blends. Plast Rubber Compos 48:338–346. https://doi.org/10.1080/14658011.2019.1625633

    Article  CAS  Google Scholar 

  189. Walton KL, Pomije JD, Clayfield T, C DDELL (2018) SAE TECHNICAL Ethylene/D -olefin Copolymers for Automotive Interiors

  190. TECHNOR APEX (2020) THERMOPLASTIC The recyclable alternative to rubber

  191. Bhattacharya D, Gowri Shankar Rao R (2013) Indispensable properties, efficacy & application of thermoplastic elastomers. Int J Innov Res Dev 2:381–392

    Google Scholar 

  192. Xu H, Detweiler L (2016) Use of micron-size tire rubbers in recycled thermoplastic polyolefins to improve elastomeric properties

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti P. More.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, A.S., Rajpurkar, Y.D. & More, A.P. Bridging the gap between rubbers and plastics: a review on thermoplastic polyolefin elastomers. Polym. Bull. 79, 1309–1343 (2022). https://doi.org/10.1007/s00289-020-03522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03522-8

Keywords

Navigation