Skip to main content
Log in

Comparative study of the optoelectronic properties of diketopyrrolopyrrole based polymers obtained by direct C-H arylation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Donor–acceptor (D-A) type of new constituted diketopyrrolopyrrole-based polymers, PDPP-EDOT (poly A), PDPP-TP (poly B), and PDPP-EBTE (poly C), were synthesized by one-pot direct C–H heteroarylation polymerization methodology supported by Pd(OAc)2/Bu4NBr catalytic system. C–H heteroarylation coupling of highly selective sites avoided the difficulty of the synthesis using organometallic reagent and gave highly pure polymers in good yields. The targeted polymers were evaluated using NMR, TGA, DSC, UV–VIS absorption, GPC, and electrochemical cyclic voltammetry. The polymers are soluble in most of organic solvents, and TGA studies show their high thermally stability. Polymers bandgaps are tuned by alternative copolymerizing with different electron-donating and/or electron-withdrawing units. UV–VIS absorption spectra demonstrated that the polymers show excellent light absorption, with narrow optical bandgaps, around 1.20 eV, confirmed by cyclic voltammetry parameters. All of these promising properties indicated that they might be excellent polymeric materials for polymer solar cells, organic field effect transistors, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Z, Chueh CC, Jen AKY (2019) Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 99:101175–101234

    Article  CAS  Google Scholar 

  2. Cui C, Li Y (2019) High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ Sci 12:3225–3246

    Article  CAS  Google Scholar 

  3. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated Polymer-Based Organic Solar Cells. Chem Rev 107(4):1324–1338

    Article  PubMed  Google Scholar 

  4. Kim M, Ryu SU, Park SA, Choi K, Kim T, Chung D, Park T (2019) Donor-acceptor conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Funct Mater 30(20):1904545–1904569

    Article  Google Scholar 

  5. Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solutionprocessable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098

    Article  CAS  Google Scholar 

  6. Giraud L, Grelier S, Grau E, Hadziioannou G, Brochon C, Cramail H, Cloutet E (2020) Upgrading the chemistry of p-conjugated polymers toward more sustainable materials. J Mater Chem C 8:9792–9810

    Article  CAS  Google Scholar 

  7. Matsui H, Takeda Y, Tokito S (2019) Flexible and printed organic transistors: from materials to integrated circuits. Org Electron 75:105432–105449

    Article  CAS  Google Scholar 

  8. Bao WW, Li R, Dai ZC, Tang J, Shi X, Geng JT, Deng ZF, Hua J (2020) Diketopyrrolopyrrole (DPP)-based materials and its applications: a review. Front Chem 8:679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao C, Guo Y, Zhang Y, Yan N, You S, Li W (2019) Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. J Mater Chem A 7:10174–10199

    Article  CAS  Google Scholar 

  10. Li W, Hendriks KH, Wienk MM, Janssen RAJ (2016) Diketopyrrolopyrrole polymers for organic solar cells. Acc Chem Res 49(1):78–85

    Article  CAS  PubMed  Google Scholar 

  11. Choi SH, Kwon OT, Kim NR, Yoon C, Kim JP, Choi JH (2010) Preparation of solvent soluble dyes derived from diketo-pyrrolo-pyrrole pigment by introducing an N-Alkyl group. Bull Kor Chem Soc 4:1073–1076

    Article  Google Scholar 

  12. Sonar P, Ng GM, Lin TT, Dodabalapur A, Chen ZK (2010) Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives: novel acceptors for organic solar cells. J Mater Chem 20(18):3626–3636

    Article  CAS  Google Scholar 

  13. Liu Q, Bottle SE, Sonar P (2019) Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics. Adv Mater 32(4):1903882–1903927

    Article  Google Scholar 

  14. Keshtov ML, Kuklin SA, Konstantinov IO, Ostapov IE, Xie Zh, Koukaras EN, Suthar R, Sharma GD (2020) New Donor-Acceptor polymers with a wide absorption range for photovoltaic applications. Sol Energy 205:211–220

    Article  CAS  Google Scholar 

  15. Kim JH, Kim KH, Shin J, Lee TW, Cho MJ, Choi DH (2013) Electrical and photoelectrical properties of polymer single nanowire made of diketopyrrolopyrrole-based conjugated copolymer bearing dithieno[3,2-b:2′,3′-d]thiophene. Synth Met 167:37–42

    Article  CAS  Google Scholar 

  16. Alqurashy BA (2019) Preparation and physical characterization of pyrene and pyrrolo[3,4-c]pyrrole-1,4-dione-based copolymers. Chem Open 8(4):429–433

    CAS  Google Scholar 

  17. Morin PO, Bura T, Leclerc M (2016) Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater Horiz 3(1):11–20

    Article  CAS  Google Scholar 

  18. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  CAS  PubMed  Google Scholar 

  19. Owczarczyk ZR, Braunecker WA, Garcia A, Larsen R, Nardes AM, Kopidakis N, Olson DC (2013) 5,10-dihydroindolo[3,2-b]indole-based copolymers with alternating donor and acceptor moieties for organic photovoltaics. Macromolecul 46(4):1350–1360

    Article  CAS  Google Scholar 

  20. Guzmán-Rabadán KK, Güizado-Rodríguez M, Barba V, Rodríguez M, Velusamy J, Ramos-Ortiz G (2020) Synthesis of fluorene-thiophene-benzothiadiazole (D-π-A) molecules by direct arylation reactions: formation of nanoparticles and their fluorescence study by one- and two-photon absorption. Opt Mater 101:109758–109769

    Article  Google Scholar 

  21. Pankow R, Thompson B (2020) Approaches for Improving the sustainability of conjugated polymer synthesis using direct arylation polymerization (DArP). Polym Chem 11:630–640

    Article  CAS  Google Scholar 

  22. Shaker M, Elhendawy M, Park B, Lee K (2019) New Designed isoindigo/thiophene medium-sized molecule containing π (D-A-D) Bridge with unexpected organic photovoltaic performance. New J Chem 43:18126–18133

    Article  CAS  Google Scholar 

  23. Shaker M, Trinh CK, Kim W, Kim H, Lee K, Lee JS (2015) Direct C-H arylation synthesis of (DD′AD′DA′)-constituted alternating polymers with low bandgaps and their photovoltaic performance. New J Chem 39(6):4957–4964

    Article  CAS  Google Scholar 

  24. Shaker M, Lee JH, Park B, Lee S, Lee K, Lee JS (2020) Synthesis and characterization of [A(DA`nD`)2] based small molecules with potential optoelectronic application. Synth Met 261:116307–116314

    Article  CAS  Google Scholar 

  25. Shaker M, Lee JH, Trinh CK, Kim W, Kim H, Lee K, Lee JS (2015) A Facile method to synthesize strong push-pull [A`(D`AD)2]-based small molecules and their photovoltaic performance. RSC Adv 5:66005–66012

    Article  CAS  Google Scholar 

  26. Stas S, Sergeyev S, Geerts Y (2010) Synthesis of diketopyrrolopyrrole (DPP) derivatives comprising bithiophene moieties. Tetrahedron 66(10):1837–1845

    Article  CAS  Google Scholar 

  27. Shaker M, Park B, Lee JH, Kim W, Trinh CK, Lee HJ, Lee K, Lee JS (2017) Synthesis and organic field effect transistor properties of isoindigo/DPP-based polymers containing a thermolabile group. RSC Adv 7(27):16302–16310

    Article  CAS  Google Scholar 

  28. Pilgram K, Zupan M, Skiles R (1970) Bromination of 2,1,3-benzothiadiazoles. J Heterocycl Chem 7(3):629–633

    Article  CAS  Google Scholar 

  29. Hou Q, Zhou Q, Zhang Y, Yang W, Yang R, Cao Y (2004) Synthesis and electroluminescent properties of high-efficiency saturated red emitter based on copolymers from fluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole. Macromolecul 37(17):6299–6305

    Article  CAS  Google Scholar 

  30. Kondratenko M, Moiseev AG, Perepichka DF (2011) New stable donor–acceptor dyads for molecular electronics. J Mater Chem 21(5):1470–1478

    Article  CAS  Google Scholar 

  31. Zhou E, Cong J, Yamakawa S, Wei Q, Nakamura M, Tajima K, Yang C, Hashimoto K (2010) Synthesis of thieno[3,4-b]pyrazine-based and 2,1,3-benzothiadiazole-based donor-acceptor copolymers and their application in photovoltaic devices. Macromolecul 43(6):2873–2879

    Article  CAS  Google Scholar 

  32. McNamara LE, Liyanage N, Peddapuram A, Murphy JS, Delcamp JH, Hammer NI (2016) Donor−acceptor−donor thienopyrazines via Pd-Catalyzed C−H activation as NIR fluorescent materials. J Org Chem 81:32–42

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Liu C-Y, Luo S-C, Zhu B, Wang T-H, Hsu H-F, Yu H-H (2012) Facile syntheses of dioxythiophene-based conjugated polymers by direct C-H arylation. Macromolecul 45(19):7783–7790

    Article  CAS  Google Scholar 

  34. Kuwabara J, Yamazaki K, Yamagata T, Tsuchida W, Kanbara T (2015) The effect of a solvent on direct arylation polycondensation of substituted thiophenes. Polym Chem 6(6):891–895

    Article  CAS  Google Scholar 

  35. Leclerc M, Berrouard P (2013) Preparation of high molecular weight polymers 8y direct arylation and heteroarylation. Patent WO 2013056355:A1

    Google Scholar 

  36. Vezie M, Few S, Meager I et al (2016) Exploring the origin of high optical absorption in conjugated polymers. Nature Mater 15:746–753

    Article  CAS  Google Scholar 

  37. Konkol KL, Schwiderski RL, Rasmussen SC (2016) Synthesis, characterization, and electropolymerization of extended fused-ring thieno[3,4-b]pyrazine-based terthienyls. Materials 9:404–419

    Article  PubMed Central  Google Scholar 

  38. Zoombelt AP, Gilot J, Wienk MM, Janssen RAJ (2009) Effect of extended thiophene segments in small band gap polymers with thienopyrazine. Chem Mater 21(8):1663–1669

    Article  CAS  Google Scholar 

  39. Szumilo MM, Gann EH, McNeill CR, Lemaur V, Oliver Y, Thomsen L, Vaynzof Y, Sommer M, Sirringhaus H (2014) Structure influence on charge transport in naphthalenediimide–thiophene copolymers. Chem Mater 26:6796–6804

    Article  CAS  Google Scholar 

  40. Koizumi Y, Ide M, Saeki A, Vijayakumar C, Balan B, Kawamoto M, Seki S (2013) Thienoisoindigo-based low-band gap polymers for organic electronic devices. Polym Chem 4:484–494

    Article  CAS  Google Scholar 

  41. Misra A, Kumar P, Srivastava R, Dhawan SK, Kamalasanan MN, Chandra S (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. IJPAP 43:921–925

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Egyptian Japanese Educational Partnership (EJEP) Fellowship, 2019. The author wishes to thank the Laboratory for Photofunctional Organic Chemistry at Nara Institute of Science and Technology for the assistance to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, M. Comparative study of the optoelectronic properties of diketopyrrolopyrrole based polymers obtained by direct C-H arylation. Polym. Bull. 79, 829–842 (2022). https://doi.org/10.1007/s00289-021-03539-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03539-7

Keywords

Navigation