Skip to main content
Log in

Contribution of root traits to variations in soil microbial biomass and community composition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

It is well known that plant root-microbe interactions are critical drivers of ecosystem processes such as soil carbon and nutrient cycling; however, considerable uncertainties exist about how root chemical and morphological traits influence soil microbial community composition.

Methods

We used 13 tree species grown in field monocultures in subtropical China to explore the ecological linkages between leaves, leaf litter, and root chemical and morphological traits associated with plant growth and nutrient-acquisition strategies, as well as soil microbial biomass, the fungi to bacteria (F/B) ratio, and Gram-positive to Gram-negative bacteria (GP/GN) ratio.

Results

The combination of above- and belowground traits captured a greater proportion of variations in soil microbial biomass and community composition than did aboveground traits alone. Individually, root traits explained more variations of the F/B and GP/GN ratios than did the individual effects of aboveground leaf or leaf litter traits. All distinct microbial biomass groups and F/B ratios decreased with the specific root length, whereas the F/B ratio increased, and the GP/GN ratio decreased with root tissue density.

Conclusions

Our study highlighted the importance of the functional traits of plant roots in determining the microbial biomass and community composition in forest ecosystems. The combination of leaf and root traits may improve our understanding of the mechanisms that underly plant-microbe interactions toward the sustainable management of forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abalos D, De Deyn GB, Kuyper TW, Groenigen V, Willem J (2014) Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Glob Chang Biol 20:265–275

    Article  PubMed  Google Scholar 

  • Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  • Barberan A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, Essene A, Hubbell SP, Faircloth BC, Fierer N (2015) Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett 18:1397–1405

    Article  PubMed  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Bergmann J, Ryo M, Prati D, Hempel S, Rillig MC (2017) Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol 216:1130–1139

    Article  PubMed  Google Scholar 

  • Burnhan KP, Anderson DR (2002) Model selection and multi-model inference: a practical Information-theoretic approach. Technometrics 45:181–181

    Google Scholar 

  • Cantarel AA, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl E-M, Grigulis K, Laîné P, Lavorel S (2015) Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition. Ecology 96:788–799

    Article  PubMed  Google Scholar 

  • Chen HYH, Brassard BW (2013) Intrinsic and extrinsic controls of fine root life span. Crit Rev Plant Sci 32:151–161

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Comas L, Bouma T, Eissenstat D (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Der Heijden MV (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • De Long JR, Jackson BG, Wilkinson A, Pritchard WJ, Oakley S, Mason KE, Stephan JG, Ostle NJ, Johnson D, Baggs EM, Bardgett RD (2019) Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. J Ecol 107:1704–1719

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries FT, Bardgett RD (2016) Plant community controls on short-term ecosystem nitrogen retention. New Phytol 210:861–874

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Fry EL, Eldridge DJ, de Vries FT, Manning P, Hamonts K, Kattge J, Boenisch G, Singh BK, Bardgett RD (2018) Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol 219:574–587

    Article  PubMed  Google Scholar 

  • Demenois J, Rey F, Ibanez T, Stokes A, Carriconde F (2018) Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient. Plant Soil 424:319–334

    Article  CAS  Google Scholar 

  • Elfstrand S, Lagerlöf J, Hedlund K, Mårtensson A (2008) Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biol Biochem 40:2530–2539

    Article  CAS  Google Scholar 

  • Fanin N, Kardol P, Farrell M, Nilsson M-C, Gundale MJ, Wardle DA (2019) The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol Biochem 128:111–114

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094

    Article  PubMed  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Gu JC, Yu SQ, Sun Y, Wang ZQ, Guo DL (2011) Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method. Ecol Res 26:755–762

    Article  Google Scholar 

  • Guyonnet JP, Cantarel AAM, Simon L, Haichar FEZ (2018) Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecol Evol 8:8573–8581

    Article  PubMed  PubMed Central  Google Scholar 

  • Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent JM, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hisano M, Chen HYH, Searle EB, Reich PB (2019) Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol Lett 22:999–1008

    Article  PubMed  Google Scholar 

  • Huang Z, Wan X, He Z, Yu Z, Wang M, Hu Z, Yang Y (2013) Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biol Biochem 62:68–75

    Article  CAS  Google Scholar 

  • Jetten MS (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909

    Article  CAS  PubMed  Google Scholar 

  • Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30

    Article  Google Scholar 

  • Kramer C, Gleixner G (2006) Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol Biochem 38:3267–3278

    Article  CAS  Google Scholar 

  • Kramer C, Trumbore S, Fröberg M, Cisneros Dozal LM, Zhang D, Xu X, Santos GM, Hanson PJ (2010) Recent (< 4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–1037

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Landesman WJ, Dighton J (2010) Response of soil microbial communities and the production of plant-available nitrogen to a two-year rainfall manipulation in the New Jersey Pinelands. Soil Biol Biochem 42:1751–1758

    Article  CAS  Google Scholar 

  • Larson JE, Funk JL (2016) Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytol 210:827–838

    Article  PubMed  Google Scholar 

  • Legay N, Baxendale C, Grigulis K, Krainer U, Kastl E, Schloter M, Bardgett RD, Arnoldi C, Bahn M, Dumont M, Poly F, Pommier T, Clement JC, Lavorel S (2014) Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann Bot 114:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Liu R, Huang Z, Mccormack ML, Zhou X, Wan X, Yu Z, Wang M, Zheng L (2017) Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation. Plant Soil 415:317–330

    Article  CAS  Google Scholar 

  • Mccormack ML, Adams TS, Smithwick EA, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun soil Sci Plant 15:1409–1416

    Article  CAS  Google Scholar 

  • Moore-Kucera J, Dick RP (2008) Application of 13C-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids. Soil Biol Biochem 40:2485–2493

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:1–10

    Article  Google Scholar 

  • Moreau D, Pivato B, Bru D, Busset H, Deau F, Faivre C, Matejicek A, Strbik F, Philippot L, Mougel C (2015) Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology 96:2300–2310

    Article  PubMed  Google Scholar 

  • Nguyen TT, Marschner P (2016) Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biol Fert Soils 52:165–176

    Article  CAS  Google Scholar 

  • Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: A link to microbial groups. Appl Soil Ecol 42:183–190

    Article  Google Scholar 

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083

    Article  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11:2244–2257

    Article  PubMed  PubMed Central  Google Scholar 

  • Pervaiz ZH, Contreras J, Hupp BM, Lindenberger JH, Chen D, Zhang Q, Wang C, Twigg P, Saleem M (2020) Root microbiome changes with root branching order and root chemistry in peach rhizosphere soil. Rhizosphere 16:100249

    Article  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna

    Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Rowland A, Roberts J (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun soil Sci Plant 25:269–277

    Article  CAS  Google Scholar 

  • Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6:47–51

    Article  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:1–11

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Soares M, Rousk J (2019) Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol Biochem 131:195–205

    Article  CAS  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Swallow M, Quideau SA, MacKenzie MD, Kishchuk BE (2009) Microbial community structure and function: The effect of silvicultural burning and topographic variability in northern Alberta. Soil Biol Biochem 41:770–777

    Article  CAS  Google Scholar 

  • Wan XH, Huang ZQ, He ZM, Yu ZP, Wang MH, Davis MR, Yang YS (2015) Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387:103–116

    Article  CAS  Google Scholar 

  • Wang Q, Wang S, He T, Liu L, Wu J (2014) Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biol Biochem 71:13–20

    Article  CAS  Google Scholar 

  • Weemstra M, Mommer L, Visser EJ, van Ruijven J, Kuyper TW, Mohren GM, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang C, Zheng M, Jiang L, Luo Y (2017) Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem 115:433–441

    Article  CAS  Google Scholar 

  • Zhu B, Cheng WX (2011) Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Glob Chang Biol 17:2172–2183

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Bingbing Zhang, Tao Wang, Junqian Yang, Yifan Liang, and Lei Wang for their assistance with field sampling. This research was supported by the National Science Fund for Distinguished Young Scholars (31625007), the National Natural Science Foundation of China (31570604 and 31600495), and Natural Science Foundation of Fujian Province (2018J01714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Michael Luke McCormack.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 868 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Chen, X., Huang, Z. et al. Contribution of root traits to variations in soil microbial biomass and community composition. Plant Soil 460, 483–495 (2021). https://doi.org/10.1007/s11104-020-04788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04788-7

Keywords

Navigation