Skip to main content

Advertisement

Log in

Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study investigated the multifractal characteristics of fine resolution (0.25ox0.25°) daily gridded rainfall fields of India over the period 1901–2013 to examine their spatiotemporal variability. The scaling characterization using Multifractal Detrended Fluctuation Analysis (MFDFA) detected short-term persistency and strong multifractality in the majority of rainfall (over 81%) of the grid points. A detailed exploration on the spatial variability of multifractal properties such as Hurst exponent, spectral width, asymmetry index, Hölder exponent are also performed for six rainfall homogenous regions and 34 meteorological subdivisions in India. The results showed that the highest persistence and complexity is noted in the mountainous terrains of northern and northeastern India. The sub-divisional scale analysis showed that the variability of persistence and complexity is the highest in Kerala and lowest at Vidarbha. Further, the evaluation of multifractal properties of rainfall series of pre- and post-1976/77 Pacific climate shift showed an increase in strength of multifractality in 62% grids after the shift. Changes in the status of persistence with respect to 1976/77 is the highest at Uttaranchal subdivision and changes from positive to negative asymmetry was the highest at northwestern (NW) region. Grid points of Peninsular India exhibited least reduction in complexity, multifractality and persistence in the post-1977 period when compared to pre-1977 period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adarsh S, Dharan DS, Anuja PK, Suman A (2018) Unravelling the scaling characteristics of daily streamflows of Brahmani river basin. SN Applied Sciences, India using Arbitrary Order Hilbert Spectral and Detrended Fluctuation Analyses. https://doi.org/10.1007/s42452-018-0056-1

    Book  Google Scholar 

  • Adarsh S, Nagesh Kumar D, Deepthi B, Gayathri G, Aswathy SS, Bhagyasree S (2019) Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. Int J Climatol 39(11):4234–4255

    Google Scholar 

  • Adarsh S, Nourani V, Archana DS, Dharan DS (2020) Multifractal description of rainfall fields over India. J Hydrol. 586:124913. https://doi.org/10.1016/j.jhydrol.2020.124913

    Article  Google Scholar 

  • Ali M, Deo RC, Downs NJ, Maraseni T (2018a) An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation index. Atmos Res 207:155–180

    Google Scholar 

  • Ali M, Deo RC, Maraseni T, Downs NJ (2019) Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated. J Hydrol 576:164–184

    Google Scholar 

  • Ali M, Deo RC, Downs NJ, Maraseni T (2018b) Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Comput Electron Agric 152:149–165

    Google Scholar 

  • Baranowski P, Krzyszczak J, Slawinski C, Hoffmann H, Kozyra J, Nieróbca A, Siwek K, Gluza A (2015) Multifractal analysis of meteorological time series to assess climate impacts. Clim Res 65:39–52

    Google Scholar 

  • Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148

    Google Scholar 

  • Bhalme HN, Mooley DA (1980) Large-scale droughts/floods and monsoon circulation. Mon Weather Rev 108(8):1197–1211

    Google Scholar 

  • Burgueño A, Lana X, Serra C, Martínez MD (2014) Daily extreme temperature multifractals in Catalonia (NESpain). Phys Lett A 378(2014):874–885

    Google Scholar 

  • Chattopadhyay J, Bhatla R (2002) Possible influence of QBO on teleconnections relating Indian summer monsoon rainfall and sea-surface temperature anomalies across the equatorial pacific. Int J Climatol 22(1):121–127

    Google Scholar 

  • Dahlstedt K, Jensen H (2005) Fluctuation spectrum and size scaling of river flow and level. Phys A 348:596–610

    Google Scholar 

  • Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Wat Resour Res 35(6):1853–1867

    Google Scholar 

  • Deidda R (1999) Multifractal analysis and simulation of rainfall fields in space. Phys Chem Earth: Part B. Hydrol Oceans Atmos 24:73–78

    Google Scholar 

  • Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Wat Resour Res 36(7):1779–1794

    Google Scholar 

  • Drożdż S, Oświȩcimka P, (2015) Detecting and interpreting distortions in hierarchical organization of complex time-series. Phys Rev E 91:030902

    Google Scholar 

  • Drożdż S, Minati L, Oświȩcimka P, Stanuszek M, Wątorek M (2019) Signatures of the crypto-currency market decoupling from the Forex. Future Internet 11(7):154. https://doi.org/10.3390/fi11070154

    Article  Google Scholar 

  • Feng S, Hu Q, Qian Q (2004) Quality control of daily meteorological data in China, 1951–2000: A new dataset. Int J Climatol 24:853–870

    Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. https://doi.org/10.1029/2004GL019733

    Article  Google Scholar 

  • Ganguli P, Janga Reddy M (2013) Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of Western India. Int J Climatol 34(3):911–928

    Google Scholar 

  • Garcia-Marin AP, Estevez J, Medina-Cobo MT, Ayuso-Munoz JL (2015) Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. J Hydrol 529:106–119

    Google Scholar 

  • Garcia-Marin AP, Morbidelli R, Saltalippi C, Cifrodelli M, Estevez J, Flammini A (2019) On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. J Hydrol 575(2019):1267–1279

    Google Scholar 

  • Ghosh S, Mujumdar PP (2007) Non-parametric methods for modeling GCM and scenario uncertainty in drought assessment. Wat Resour Res. https://doi.org/10.1029/2006WR005351

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. https://doi.org/10.1029/2005GL024803

    Article  Google Scholar 

  • Graham NE (1994) Decadal scale variability in the 1970’s and 1980’s: Observations and model results. Clim Dyn 10:60–70

    Google Scholar 

  • Hartmann B, Wendler G (2005) The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska. J Clim 18(22):4824–4839

    Google Scholar 

  • Hou W, Feng G, Yan P, Li S (2018) Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012. Meteorol Atmos Phys 130:459–471

    Google Scholar 

  • Huang Y, Schmitt FG, Lu Z, Liu Y (2009) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111

    Google Scholar 

  • Huang Q, Chen Y, Xu S, Liu J (2014) Case study of applying Multifractal models for rainfall IDF analysis in China. J Hydrol Engng 19(1):205–210

    Google Scholar 

  • Hubert P (2001) Multifractals as a tool to overcome scale problems in hydrology. Hydrol Sci J 46(6):897–905

    Google Scholar 

  • Hurst HE (1965) Long-term storage: An experimental study. Constable, London

    Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Transaction of American Society of Civil Engineers 116:770–808

    Google Scholar 

  • Ihlen EAFE (2012) Introduction to multifractal detrended fluctuation analysis in MATLAB. Front physiol 3:141

    Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of rainfall and river runoff records. J Geophys Res. https://doi.org/10.1029/2005JD005881

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of non-stationary time series. Phys A 316(1–4):87–114

    Google Scholar 

  • Kantelhardt JW, Rybski D, Zschiegner SA, Braun P, Koscielny-Bunde E, Livina V, Havlin S, Bunde A (2003) Multifractality of river runoff and rainfall: comparison of fluctuation analysis and wavelet methods. Phys A 330:240–245

    Google Scholar 

  • Karatasou S, Santamouris M (2018) Multifractal analysis of high-frequency temperature time series in the urban environment. Climate 6(2):50

    Google Scholar 

  • Kolmogorov AN (1941) Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. Proc Acad Sci URSS Geochem Sect 30:299–303

    Google Scholar 

  • Koscielny-Bunde E, Kantelhart JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120–137

    Google Scholar 

  • Krzyszczak J, Baranowski P, Zubik M, Hoffmann H (2017) Temporal scale influence on multifractal properties ofagro-meteorological time series. Agri Forest Meteorol 239(2017):223–235

    Google Scholar 

  • Krzyszczak J, Baranowski P, Zubik M, Kazandjiev V, Georgieva V, Sławiński C, Siwek K, Kozyra J, Nieróbca A (2018) Multifractal characterization and comparison of meteorological time series from two climatic zones. Theo Appl Climatol. https://doi.org/10.1007/s00704-018-2705-0

    Article  Google Scholar 

  • Langridge R, Christian-Smith J, Lohse K (2006) Access and resilience: analyzing the construction of social resilience to the threat of water scarcity. Ecology and Society. https://doi.org/10.5751/ES-01825-110218

    Article  Google Scholar 

  • Li E, Mu X, Zhao G, Gao P (2015) Multifractal detrended fluctuation analysis of streamflow in Yellow river basin, China. Water 7:1670–1686

    Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. WH Freeman Publishers, New York

    Google Scholar 

  • Miller AJ, Rayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 Climate Shift of the Pacific Ocean. Oceanography 7(1):21–26

    Google Scholar 

  • Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. S.S.S.R Ser. Geogr Geofiz 13:58–69

    Google Scholar 

  • Olsson J, Niemczynowicz J (1996) Multifractal analysis of daily spatial rainfall distributions. J Hydrol 187(1–2):29–43

    Google Scholar 

  • Pandey G, Lovejoy S, Schertzer D (1998) Multifractal analysis of daily river flows including extremes for basins five to two million square kilometers, one day to 75 years. J Hydrol 208:62–81

    Google Scholar 

  • Pathirana P, Herath S, Yamada T (2007) Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrol Earth Sys Sci Disc 7(5):668–679

    Google Scholar 

  • Pai D, Sridhar L, Rajeevan M, Sreejith O, Satbhai N, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65:1–18

    Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Physical rev E 49(2):1685

    Google Scholar 

  • Powell AM Jr, Xu J (2012) The 1977 Global Regime Shift: A Discussion of Its Dynamics and Impacts in the Eastern Pacific Ecosystem. Atmos Ocean 50(4):421–436

    Google Scholar 

  • Rego CRC, Frota HO, Gusmao MS (2013) Multifractality of Brazilian rivers. J Hydrol 495:208–215

    Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modelling and analysis of rain and clouds by aniso–tropic scaling multiplicative processes. J Geophys Res 92:9693–9714

    Google Scholar 

  • Sahana AS, Ghosh S, Ganguly A (2015) Murtugudde R (2015) Shift in Indian summer monsoon onset during 1976/1977. Environ Res Lett 10:054006

    Google Scholar 

  • Shang P, Kame S (2005) Fractal nature of time series in the sediment transport phenomenon. Chaos Solitons Fractals 26:997–1007

    Google Scholar 

  • Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos 120:495–516

    Google Scholar 

  • Serinaldi F (2010) Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models. Nonlin Processes Geophys 17(6):697–714

    Google Scholar 

  • Tan X, Gan TW (2017) Multifractality of Canadian rainfall and streamflow. Int J Climatol 37(S1):1221–1236

    Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: Theory and observations for rain and clouds. J Appl Meteorol 32(2):223–250

    Google Scholar 

  • Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res 101:26427–26440

    Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the northern hemisphere. Bull Am Meteorol Soc 71:988–993

    Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Google Scholar 

  • Veneziano A, Furcolo P (2002) Multifractality of rainfall and scaling of intensity-duration-frequency curves. Wat Resour Res 38(12):1–12

    Google Scholar 

  • Verrier S, de Montera L, Barthès L, Mallet C (2010) Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem. J Hydrol 389:111–120

    Google Scholar 

  • Vörösmarty CJ et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Google Scholar 

  • Yu ZG, Leung Y, Chen YD, Zhang Q, Anh V, Zhou Y (2014) Multifractal analyses of daily rainfall time series in Pearl River basin of China. Phys A 405:193–202

    Google Scholar 

  • Wu L, Lee DE, Liu Z (2005) The 1976/77 North Pacific climate regime shift the role of subtropical ocean adjustment and coupled ocean-atmosphere feedbacks. J Climate. 18(23):5125–5140

    Google Scholar 

  • Zhang Q, Xu C-Y, Chen YD, Yu Z (2008) Multifractal detrended fluctuation analysis of streamflow series of the Yangtze river basin, China. Hydrol Process 22:4997–5003

    Google Scholar 

  • Zhang Q, Xu C-Y, Yu Z, Liu C-L, Chen Y-D (2009) Multifractal analysis of streamflow records of the East river basin (Pearl river), China. Phys A 388:927–934

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the service of India meteorological Department (IMD) for providing the 0.25°× 0.25° daily rainfall time series for performing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, A., Chavan, S.R., Ali, M. et al. Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India. Nat Hazards 106, 1951–1979 (2021). https://doi.org/10.1007/s11069-021-04523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04523-0

Keywords

Navigation