Skip to main content
Log in

Computational analysis of the effects of carbon nanotubes on the bending, buckling, and vibration characteristics of carbon fabric/polymer hybrid nanocomposite plates

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the effects of adding carbon nanotubes (CNTs) on the bending, buckling and free vibration characteristics of carbon fabric/polymer hybrid nanocomposite plates (HNCPs) are investigated using a computational approach. First, a hierarchical finite element micromechanics approach is proposed to estimate the hybrid composite properties. The formation of interfacial region due to the non-bonded van der Waals interactions among the CNTs and polymer is considered. Then, finite element analysis is carried out to compute the mechanical responses of the CNT/carbon fabric hybrid composite structures. It is found that incorporating the CNTs into the carbon fabric-reinforced polymer materials results in an enhancement of buckling capacity and natural frequencies of the HNCPs. The maximum deflection of the traditional carbon fabric/polymer composite plates is decreased by adding the CNTs. A parametric study is accomplished to evaluate the influences of amount and aspect ratio of CNTs, material properties and thickness of interfacial region as well as the thickness and various shapes of plate on the flexural deformation, buckling and vibration characteristics of the HNCPs. The predictions are compared with those available in the literature to verify the validity of the presented computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Oskouie MF, Hassanzadeh-Aghdam MK, Ansari R (2019) A new numerical approach for low velocity impact response of multiscale-reinforced nanocomposite plates. Eng Comput. https://doi.org/10.1007/s00366-019-00851-9

    Article  Google Scholar 

  2. Pan ZZ, Zhang LW, Liew KM (2019) Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers. Comput Methods Appl Mech Eng 355:753–778

    Article  MathSciNet  Google Scholar 

  3. Karataş MA, Motorcu AR, Gökkaya H (2020) Optimization of machining parameters for kerf angle and roundness error in abrasive water jet drilling of CFRP composites with different fiber orientation angles. J Braz Soc Mech Sci Eng 42(4):1–27

    Google Scholar 

  4. Kassa MK, Arumugam AB, Rana T (2020) Three-phase modelling and characterization of elastic behavior of MWCNT reinforced GFRP composites: A combined numerical and experimental study. Mater Today Proc 26:944–949

    Article  Google Scholar 

  5. Kassa MK, Arumugam AB (2020) Micromechanical modeling and characterization of elastic behavior of carbon nanotube-reinforced polymer nanocomposites: a combined numerical approach and experimental verification. Polymer Compos. https://doi.org/10.1002/pc.25622

    Article  Google Scholar 

  6. Ebrahimi F, Seyfi A (2019) Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1666722

    Article  Google Scholar 

  7. Lei ZX, Zhang LW, Liew KM (2016) Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos B Eng 84:211–221

    Article  Google Scholar 

  8. Pan Z, Liew KM (2020) Predicting vibration characteristics of rotating composite blades containing CNT-reinforced composite laminae and damaged fiber-reinforced composite laminae. Compos Struct 250:112580

    Article  Google Scholar 

  9. Liew KM, Pan Z, Zhang LW (2020) The recent progress of functionally graded CNT reinforced composites and structures. Sci China Phy Mech Astron 63(3):234601

    Article  Google Scholar 

  10. Rouhi S, Nikkar A, Ansari R (2019) Finite element investigation of the elastic modulus of concentric boron nitride and carbon multi-walled nanotubes. J Braz Soc Mech Sci Eng 41(1):34

    Article  Google Scholar 

  11. Zhang LW, Zhang Y, Zou GL, Liew KM (2016) Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos Struct 149:247–260

    Article  Google Scholar 

  12. Zhang LW, Liew KM (2016) Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach. Compos Struct 138:40–51

    Article  Google Scholar 

  13. Ou Y, González C, Vilatela JJ (2019) Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Compos A Appl Sci Manuf 124:105477

    Article  Google Scholar 

  14. Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon 49(9):3098–3106

    Article  Google Scholar 

  15. An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11):4130–4143

    Article  Google Scholar 

  16. Lee G, Sung M, Youk JH, Lee J, Yu WR (2019) Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites. Compos Struct 220:580–591

    Article  Google Scholar 

  17. Duongthipthewa A, Su Y, Zhou L (2020) Electrical conductivity and mechanical property improvement by low-temperature carbon nanotube growth on carbon fiber fabric with nanofiller incorporation. Compos B Eng 182:107581

    Article  Google Scholar 

  18. Shin YC, Lee WI, Kim HS (2020) Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites. Compos Struct 236:111808

    Article  Google Scholar 

  19. Tarfaoui M, El Moumen A, Lafdi K (2017) Progressive damage modeling in carbon fibers/carbon nanotubes reinforced polymer composites. Compos B Eng 112:185–195

    Article  Google Scholar 

  20. El Moumen A, Tarfaoui M, Lafdi K (2018) Computational homogenization of mechanical properties for laminate composites reinforced with thin film made of carbon nanotubes. Appl Compos Mater 25(3):569–588

    Article  Google Scholar 

  21. Zhang LW, Xiao LN (2017) Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading. Compos B Eng 122:219–230

    Article  Google Scholar 

  22. Zhang LW (2017) On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos Struct 160:824–837

    Article  Google Scholar 

  23. Zhang LW, Xiao LN, Zou GL, Liew KM (2016) Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos Struct 148:144–154

    Article  Google Scholar 

  24. Zhang LW, Song ZG, Liew KM (2016) Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Compos B Eng 85:140–149

    Article  Google Scholar 

  25. El MoumenTarfaoui AM, Lafdi K, Benyahia H (2017) Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos B Eng 125:1–8

    Article  Google Scholar 

  26. Siegfried M, Tola C, Claes M, Lomov SV, Verpoest I, Gorbatikh L (2014) Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Compos Struct 111:488–496

    Article  Google Scholar 

  27. El Moumen A, Tarfaoui M, Benyahia H, Lafdi K (2019) Mechanical behavior of carbon nanotubes-based polymer composites under impact tests. J Compos Mater 53(7):925–940

    Article  Google Scholar 

  28. Zare Y (2015) Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech Mater 85:1–6

    Article  Google Scholar 

  29. Ansari R, Hassanzadeh-Aghdam MK (2017) Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7):1625–1640

    Article  Google Scholar 

  30. Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2019) Thermal expanding behavior of carbon nanotube-shape memory polymer nanocomposites. Mech Adv Mater Struct 26(22):1858–1869

    Article  Google Scholar 

  31. Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38(8–10):884–907

    Article  Google Scholar 

  32. Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos B Eng 41(1):106–115

    Article  Google Scholar 

  33. Sherburn, M., & Long, A. C. (2010). TexGen open source project. Online at http://texgen.sourceforge.net.

  34. Dixit A, Mali HS, Misra RK (2013) Unit cell model of woven fabric textile composite for multiscale analysis. Procedia Eng 68:352–358

    Article  Google Scholar 

  35. Zghal S, Frikha A, Dammak F (2018) Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos B Eng 150:165–183

    Article  Google Scholar 

  36. Zhang LW, Lei ZX, Liew KM (2015) Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos B Eng 75:36–46

    Article  Google Scholar 

  37. Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct 194:49–67

    Article  Google Scholar 

  38. Ansari R, Hassanzadeh-Aghdam MK (2016) Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int J Mech Sci 115:45–55

    Article  Google Scholar 

  39. Mahmoodi MJ, Rajabi Y, Khodaiepour B (2020) Electro-thermo-mechanical responses of laminated smart nanocomposite moderately thick plates containing carbon nanotube–A multi-scale modeling. Mech Mater 141:103247

    Article  Google Scholar 

  40. Zare Y, Rhee KY (2019) Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Compos B Eng 156:64–71

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or M. K. Hassanzadeh-Aghdam.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakamal, A., Ansari, R. & Hassanzadeh-Aghdam, M.K. Computational analysis of the effects of carbon nanotubes on the bending, buckling, and vibration characteristics of carbon fabric/polymer hybrid nanocomposite plates. J Braz. Soc. Mech. Sci. Eng. 43, 61 (2021). https://doi.org/10.1007/s40430-020-02792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02792-7

Keywords

Navigation