Skip to main content
Log in

Rapid synthesis of ambient pressure dried tetraethoxysilane based silica aerogels

  • Brief Communication: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica aerogel can be produced by using ambient pressure drying (APD) or supercritical drying depending on the required properties and kind of application. Processing time for ambient pressure dried silica aerogels are longer due to the time consuming steps such as hydrolysis and solvent exchange. Considerable decrease in time has been reported by a few research groups by employing shaking during the solvent exchange. We are reporting further reduction in processing time of tetraethoxysilane (TEOS)-based silica aerogel by carrying out the hydrolysis process at elevated temperature. The aerogel obtained in least processing time showed low density (0.066 kg/m3), low thermal conductivity (0.043 W/mK), high specific surface area, and porosity. This shows that elevated temperature hydrolysis does not hamper the desired properties of the product.

Highlights

  • Rapid synthesis of hydrophobic silica aerogels is discussed in detail.

  • Ambient pressure drying method used to produce silica aerogels in 16 h 50 min.

  • Elevated temperature hydrolysis reduced the processing time without altering properties of aerogel.

  • The aerogel obtained in least processing time showed low density, low thermal conductivity, high specific surface area and porosity.

  • The aerogel is hydrophobic with water contact angle 140°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Brinker CJ, Scherer GW (1990) Sol–gel science, 1st ed. Academic Press Inc, London, p 108–130. Chapter 3

    Google Scholar 

  2. Leventis N, Koebel MM (2011) In: Aegerter MA (ed.) Aerogels handbook. Springer Science & Business Media, Springer-Verlag, New York

  3. Torres RB, Vareda JP, Lamy-Mendes A, Durães L (2019) J Supercrit Fluid 147:81

    Article  CAS  Google Scholar 

  4. Yang Z, Zhu D, Li H (2020) Microporous Mesoporous Mater 293:109781. https://doi.org/10.1016/j.micromeso.2019.109781

    Article  CAS  Google Scholar 

  5. Kwon YG, Choi SY, Yang ES, Baek SS (2000) J Mater Sci 35:6075

    Article  CAS  Google Scholar 

  6. Gurav JL, Rao AV, Nadargi DY (2010) J Mater Sci 45:503

    Article  CAS  Google Scholar 

  7. Mahadik DB, Rao AV, Kumar R, Ingale SV, Wagh PB, Gupta SC (2012) J Porous Mater 19:87

    Article  CAS  Google Scholar 

  8. He S, Li Z, Shi X, Yang H, Gong L, Cheng X (2015) Adv Powder Technol 26:537

    Article  CAS  Google Scholar 

  9. Clark J (2000) Calculations in AS/A level chemistry, Pearson Education Limited, Haloaw United Kingdom (Paperback)

  10. Rao AV, Ganbavle VV, Bangi UKH, Dhere SL (2011) J Porous Mater 18:751. https://doi.org/10.1007/s10934-010-9444-7

    Article  CAS  Google Scholar 

  11. Askwar H, Jong-Kil K, Sarawade P, Taik KH (2009) J Alloy Compd 487:744

    Article  Google Scholar 

  12. Nassor ECO, Ávila LR, Pereira PFS, Ciuffi KJ, Calefi PS, Nassar EJ (2011) Mater Res 14:1

    Article  CAS  Google Scholar 

  13. Omranpour H, Motahari S (2013) J Non-Cryst Solids 379:7

    Article  CAS  Google Scholar 

  14. Pouretedal HR, Kazemi M (2012) Int J Ind Chem 3:20

    Article  Google Scholar 

  15. Stroud RM, Long JW, Pietron JJ, Rolison DR (2004) A practical guide to transmission electron microscopy of aerogels. J Non-cryst Solids 350:277

    Article  CAS  Google Scholar 

  16. Bikerman JJ (1958) 2nd edn. Surface chemistry: theory and applications. Academic, New York, p 343

  17. Shin H, Cui J, Shen H, Wu H (2014) Adv Mater Sci Eng. ID 850420. https://doi.org/10.1155/2014/850420

  18. Bangi UKH, Dhere SL, Rao AV (2010) J Mater Sci 45:2944

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Dhere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganbavle, V.V., Kalekar, A.S., Harale, N.S. et al. Rapid synthesis of ambient pressure dried tetraethoxysilane based silica aerogels. J Sol-Gel Sci Technol 97, 5–10 (2021). https://doi.org/10.1007/s10971-020-05437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05437-2

Keywords

Navigation