Skip to main content
Log in

Sol–gel synthesized Mg–Ag–Mn nanoferrites for Power Applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnesium nanoferrites are gaining a lot of scientific attention because of its magnificent dielectric characteristics such as large dielectric constant with minute dielectric losses, which make it suitable for potential applications such as high frequency, microwave devices, switching devices, power, magnetic storage devices, and many more. A series of manganese- and silver-substituted magnesium nanoferrites with the chemical composition Mg1−yMnyAgxFe2−xO4 (0.1 ≤ y ≤ 0.4, 0.0 ≤ x ≤ 0.3) were synthesized via sol–gel auto-combustion technique for reporting the electrical and dielectric study of synthesized specimens. In the present investigation, the dc resistivity (ρ) of prepared nanoferrites goes on decreasing as a function of Ag+ and Mn2+ concentrations extensively indicate its semi-conductor behavior. From the dielectric measurements, dielectric constant (∈′) increases with the increase in frequency, whereas the dielectric loss tangent (tan δ) shows an inverse behavior with the increasing frequency, respectively. In relation with the dielectric investigations, AC conductivity (σac) shows similar behavior to that of dielectric constant. Therefore, such materials of high dielectric constant with minute dielectric losses make it suitable for the power application.

Highlights

  • Silver and manganese-doped magnesium nanoferrites were synthesized via sol–gel auto-combustion technique.

  • Indicating semi-conductor behavior of synthesized samples.

  • Dielectric constant (∈′) increases with very low dielectric losses (tan δ) which make it suitable for the power application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Šafařík I, Šafaříková M (2002) Magnetic nanoparticles and biosciences. Nanostructured materials. Springer, Vienna, p 1–23

  2. Xu Q, Wei Y, Liu Y, Ji X, Yang L, Gu M (2009) Preparation of Mg/Fe spinel ferrite nanoparticles from Mg/Fe-LDH microcrystallites under mild conditions. Solid State Sci 11(2):472–478

    Article  CAS  Google Scholar 

  3. Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129(1–3):51–65

    Article  CAS  Google Scholar 

  4. Dulta K, Ağçeli GK, Chauhan P, Jasrotia R, Chauhan PK (2020) A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: antibacterial and anticancer potential. J Inorg Organomet Polym Mater 1–11, https://doi.org/10.1007/s10904-020-01684-6

  5. Candeia RA, Bernardi MIB, Longo E, Santos IMG, Souza AG (2004) Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater Lett 58(5):569–572

    Article  CAS  Google Scholar 

  6. Costa A, Leite AMD, Ferreira HS, Kiminami R, Cava S, Gama L (2008) Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. J Eur Ceram Soc 28(10):2033–2037

    Article  CAS  Google Scholar 

  7. Wang X, Yang G, Zhang Z, Yan L, Meng J (2007) Synthesis of strong-magnetic nanosized black pigment ZnxFe (3-x) O4. Dyes pigments 74(2):269–272

    Article  CAS  Google Scholar 

  8. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  Google Scholar 

  9. Jasrotia R, Puri P, Verma A, Singh VP (2020) Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application. J Solid State Chem 289:121462

  10. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  CAS  Google Scholar 

  11. Molday RS, Mackenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J immunol Method 52(3):353–367

    Article  CAS  Google Scholar 

  12. Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J, Song H-T et al. (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  CAS  Google Scholar 

  13. Jasrotia R, Singh VP, Kumar R, Singha K, Chandel M, Singh M (2019) Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mo\“ ssbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys 12:1933–1941

    Article  Google Scholar 

  14. Jasrotia R, Kumar G, Batoo KM, Adil SF, Khan M, Sharma R et al. (2019) Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications. Phys B Condens Matter 569:1–7

    Article  CAS  Google Scholar 

  15. Willey RJ, Noirclerc P, Busca G (1993) Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem Eng Commun 123(1):1–16

    Article  CAS  Google Scholar 

  16. Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca G (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81(4):1851–1857

    Article  CAS  Google Scholar 

  17. Rane KS, Verenkar VMS, Sawant PY (2001) Dielectric behaviour of MgFe 2 O 4 prepared from chemically beneficiated iron ore rejects. Bull Mater Sci 24(3):323–330

    Article  CAS  Google Scholar 

  18. Goldman A (2006) Ferrite Processing. Modern ferrite technology. Springer, Boston, MA, Boston, p 151–216

  19. Shimizu Y, Arai H, Seiyama T (1985) Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens Actuators 7(1):11–22

    Article  CAS  Google Scholar 

  20. Seki K, Shida J-I, Murakami K (1988) Use of a temperature-sensitive ferrite for temperature/humidity measurements. IEEE Trans Instrum Meas 37(3):468–470

    Article  Google Scholar 

  21. De Haart LGJ, Blasse G (1985) Photoelectrochemical properties of ferrites with the spinel structure. J Electrochem Soc 132(12):2933–2938

    Article  Google Scholar 

  22. Huang Y, Tang Y, Wang J, Chen Q (2006) Synthesis of MgFe2O4 nanocrystallites under mild conditions. Mater Chem Phys 97(2–3):394–397

    Article  CAS  Google Scholar 

  23. Dom R, Subasri R, Radha K, Borse PH (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun 151(6):470–473

    Article  CAS  Google Scholar 

  24. Watanabe Y, Sato K, Yukumi S, Yoshida M, Yamamoto Y, Sugishita H et al. (2009) Development of a second-generation radiofrequency ablation using sintered MgFe 2O 4 needles and alternating magnetic field for human cancer therapy. Bio-Med Mater Eng 19(2–3):101–110

    Article  CAS  Google Scholar 

  25. Chandel M, Singh VP, Jasrotia R, Singha K, Kumar R (2020) A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials. AIMS Materials Science, 7(3):244–268

  26. Chandel M, Singh VP, Jasrotia R, Singha K, Singh M, Thakur P et al. (2020) Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: a study of structural and magnetic properties. Phys B Condens Matter 595:412378

  27. Jasrotia R, Singh VP, Kumar R, Singh M (2020) Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials. Ceram Int 46(1):618–621

    Article  CAS  Google Scholar 

  28. Singh VP, Jasrotia R, Kumar R, Raizada P, Thakur S, Batoo KM et al. (2018) A current review on the synthesis and magnetic properties of M-type hexaferrites material. World J Condens Matter Phys 8(2):36

    Article  Google Scholar 

  29. Jasrotia R, Singh VP, Sharma RK, Singh M (2019) Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites. AIP conference proceedings. AIP Publishing LLC, Bahal, Haryana, p 090004

  30. Kour S, Sharma RK, Jasrotia R, Singh VP (2019) A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications. AIP conference proceedings. AIP Publishing LLC, Bahal, Haryana, p 090007

  31. Singha K, Jasrotia R, Singh VP, Chandel M, Kumar R, Kalia S (2020) A study of magnetic properties of Y–Ni–Mn substituted Co 2 Z-type nanohexaferrites via vibrating sample magnetometry. J Sol-Gel Sci Technol 1–9, https://doi.org/10.1007/s10971-020-05412-x

  32. Jasrotia R, Singh VP, Sharma B, Verma A, Puri P, Sharma R et al. (2020) Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications. J Alloy Compd 830:154687

  33. Mulushoa SY, Murali N, Wegayehu MT, Margarette SJ, Samatha K (2018) Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite. Results Phys 8:772–779

    Article  Google Scholar 

  34. Dawoud HA, Ouda LSA, Shaat SK (2017) AC and dielectric properties of polycrystalline Zn–Ni spinel ferrites prepared by double sintering technique. IUG J Nat Stud 25:274–281

  35. Dawoud HA, Abu Mosa ZA, Shaat SK (2017) Synthesis and ac properties of mixed LI-ZN ferrites. Int J Curr Res 9(10):59176–59179

  36. Dawoud HA, Abu Ouda LS, Shaat SK (2016) Investigation of the effect of Zn ions concentration on DC conductivity and curie temperature of Ni-spinel ferrite. Am J Mater Sci 4(2):11–17

  37. Dawoud HA, Shaat SK, Yassin S (2010) AC conductivity and dielectric properties of Cu–Zn ferrites. Journal of Al Azhar University-Gaza (Natural Sciences) 12(12):65–74

  38. Dawoud HA, Abu Mosa Z, Shaat S (2019) Curie points and direct current electrical conductivity for inverse Li-spinel ferrite replaced by Zn2+ ion. Am J Mater Sci 7(1):13–18

  39. Jasrotia R, Singh VP, Kumar R, Verma R, Chauhan A (2019) Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Results Phys 15:102544

    Article  Google Scholar 

  40. Durrani SK, Naz S, Mehmood M, Nadeem M, Siddique M (2017) Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J Saudi Chem Soc 21(8):899–910

    Article  CAS  Google Scholar 

  41. Khan MA, Islam MU, Ishaque M, Rahman IZ (2011) Effect of Tb substitution on structural, magnetic and electrical properties of magnesium ferrites. Ceram Int 37(7):2519–2526

    Article  CAS  Google Scholar 

  42. Hankare PP, Vader VT, Patil NM, Jadhav SD, Sankpal UB, Kadam MR et al. (2009) Synthesis, characterization and studies on magnetic and electrical properties of Mg ferrite with Cr substitution. Mater Chem Phys 113(1):233–238

    Article  CAS  Google Scholar 

  43. Dar MA, Verma V, Gairola SP, Siddiqui WA, Singh RK, Kotnala RK (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258(14):5342–5347

    Article  Google Scholar 

  44. Jasrotia R, Singh VP, Sharma RK, Kumar P, Singh M (2019) Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites. AIP conference proceedings. AIP Publishing LLC, Bahal, Haryana, p 140004

  45. Seshan K (2002) Handbook of thin film deposition techniques principles, methods, equipment and applications, second edn, CRC Press, Boca Raton

  46. Kumar G, Rani R, Sharma S, Batoo KM, Singh M (2013) Electric and dielectric study of cobalt substituted Mg-Mn nanoferrites synthesized by solution combustion technique. Ceram Int 39(5):4813–4818

    Article  CAS  Google Scholar 

  47. Lakshman A, Rao PS, Rao BP, Rao KH (2005) Electrical properties of In3+ and Cr3+ substituted magnesium–manganese ferrites. J Phys D Appl Phys 38(5):673

    Article  CAS  Google Scholar 

  48. Bhargava R, Khan S (2017) Effect of reduced graphene oxide (rGO) on structural, optical, and dielectric properties of Mg (OH) 2/rGO nanocomposites. Adv Powder Technol 28(11):2812–2819

    Article  CAS  Google Scholar 

  49. Narang SB, Kaur D, Pubby K (2016) Structural, dielectric and electrical analysis of B a2- x L a4+ 2x/3 T i8O24 ceramics system with frequency and temperature. Microw Optical Technol Lett 58(7):1679–1686

    Article  Google Scholar 

  50. Soman VV, Nanoti VM, Kulkarni DK (2013) Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram Int 39(5):5713–5723

    Article  CAS  Google Scholar 

  51. Kuruva P, Matli PR, Mohammad B, Reddigari S, Katlakunta S (2015) Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route. J Magn Magn Mater 382:172–178

    Article  CAS  Google Scholar 

  52. El-Sayed SM, Meaz TM, Amer MA, El, Shersaby HA (2013) Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys B Condens Matter 426:137–143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Jasrotia, Pooja Puri or Virender Pratap Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasrotia, R., Puri, P., Singh, V.P. et al. Sol–gel synthesized Mg–Ag–Mn nanoferrites for Power Applications. J Sol-Gel Sci Technol 97, 205–212 (2021). https://doi.org/10.1007/s10971-020-05428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05428-3

Keywords

Navigation