Skip to main content

Advertisement

Log in

Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Air pollution associated with particulate matters results in different types of disease including allergy, lung destruction, heart failure, and related problems. This study has been designed and performed to examine the concentration of PM2.5-bound heavy metals, risk assessment, possible sources and effect of meteorological parameters on 17 sites of the air of the most industrial city of Iran (Karaj) in 2018-19. For this purpose, four samples were taken from every point of Karaj air over one year using a pump (Leland Legacy (SKC)) with flow rate of 3 L/min on PTFE filter for 24 h. Overall, 68 samples of PM2.5-bound heavy metals were collected. Note that during the sampling, atmospheric parameters including temperature, pressure, humidity, and wind speed were regularly recorded using PHB318 portable device. In examining the chemical composition of these particles, the concentration of metals (Al-Zn- Ar-Cd-Cr-Cu-Fe-Hg-Mn-Ni-Pb) was determined after digestion of the collected samples and through injection into ICP-OEC device. The results indicated that the mean annual concentration of PM2.5 particles range from 21.84 to 72.75 µg/m3. The mean concentration of heavy metals lied within the range of 25.63 to 336.27 ng/m3. Among heavy metals, the maximum concentration belonged to aluminum (277.95 ng/m3) and iron (336.27 ng/m3), which are known as elements with a ground source (sources such as car fuels, exhaust gases, decorative materials, batteries, indoor smoking, the paint used for painting walls, erosion and corrosion of rubber of cars). Meanwhile, there was a positive relationship between heavy metals and temperature(r: 0.418, p < 0.019), pressure (r: 0.184, p < 0.0.402), as well as wind speed (r: 0.38, p < 0.017), while an inverse relationship was observed with relative humidity (r: -0.219, p < 0.018). The ecological risk of the metals calculated was very notable, with the maximum environmental risk being related to cadmium in children (6.61) and manganese in adults (0.82). The largest HQ in children and adults was associated with Cr. Finally, ILCR values for cadmium in both children (1.19 E-04) and adult (4.81 E-04) groups indicated high risk of developing cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hao Y, Peng H, Temulun T, Liu L-Q, Mao J, Lu Z-N, Chen H. How harmful is air pollution to economic development? New evidence from PM2. 5 concentrations of Chinese cities. J Clean Prod. 2018;172:743–57.

    Article  CAS  Google Scholar 

  2. Nabizadeh R, Yousefi M, Azimi F. Study of particle number size distributions at Azadi terminal in Tehran, comparing high-traffic and no traffic area. MethodsX. 2018;5:1549–55.

    Article  Google Scholar 

  3. VU VT, Shi Z, Cheng J, Zhang Q, He K, Wang S, Harrison R. Assessing the impact of clean air action on air quality trends in Beijing using a machine learning. Atmos Chem Phys. 2019;19:11303–14.

    Article  CAS  Google Scholar 

  4. Hajizadeh Y, Jafari N, Mohammadi A, Momtaz SM, Fanaei F, Abdolahnejad A. Concentrations and mortality due to short-and long-term exposure to PM 2.5 in a megacity of Iran (2014–2019). Environ Sci Pollut Res. 2020;27(30):38004–14.

    Article  CAS  Google Scholar 

  5. ​Kermani M, Arfaeinia H, Masroor K, Abdolahnejad A, Fanaei F, Shahsavani A, et al. Health impacts and burden of disease attributed to long-term exposure to atmospheric PM10/PM2. 5 in Karaj, Iran: effect of meteorological factors. Int J Environ Anal Chem. 2020;1–17. https://doi.org/10.1080/03067319.2020.1807534.

  6. Dehghani MH, Jarahzadeh S, Hadei M, Mansouri N, Rashidi Y, Yousefi M. The data on the dispersion modeling of traffic-related PM10 and CO emissions using CALINE3; A case study in Tehran, Iran. Data in brief. 2018;19:2284–90.

    Article  Google Scholar 

  7. Arfaeinia H, Nabipour I, Ostovar A, Asadgol Z, Abuee E, Keshtkar M, Dobaradaran S. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ Sci Pollut Res. 2016;23(10):9871–90.

    Article  CAS  Google Scholar 

  8. Bolognin S, Messori L, Zatta P. Metal ion physiopathology in neurodegenerative disorders. Neuromol Med. 2009;11(4):223–38.

    Article  CAS  Google Scholar 

  9. Jafari N, Ebrahimi AA, Mohammadi A, Hajizadeh Y, Abdolahnejad A. Evaluation of seasonal and spatial variations of Air Quality Index and ambient air pollutants in Isfahan using Geographic Information System. J Environ Health Sustain Dev. 2017;2(2):263–72.

    CAS  Google Scholar 

  10. Vahidi MH, Fanaei F, Kermani M. Long-term health impact assessment of PM2. 5 and PM10: Karaj, Iran. Int J Environ Health Eng. 2020;9(1):8.

    CAS  Google Scholar 

  11. Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer. 2014;33(4):189.

    Article  CAS  Google Scholar 

  12. Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, Gholampour A, Arhami M, Kashani H, Zare A. Characterization of PAHs and metals in indoor/outdoor PM10/PM2. 5/PM1 in a retirement home and a school dormitory. Sci Total Environ. 2015;527:100–10.

    Article  Google Scholar 

  13. Lin YC, Li YC, Amesho KT, Shangdiar S, Chou FC, Cheng PC. Chemical characterization of PM2. 5 emissions and atmospheric metallic element concentrations in PM2. 5 emitted from mobile source gasoline-fueled vehicles. Sci Total Environ. 2020;739:139942.

  14. Hajizadeh Y, Mokhtari M, Faraji M, Abdolahnejad A, Mohammadi A. Biomonitoring of airborne metals using tree leaves: Protocol for biomonitor selection and spatial trend. MethodsX. 2019;6:1694–700.

    Article  Google Scholar 

  15. Fanaei F, Kermani M, Jafari AJ, Gholami MGM, Farzadkia M, Arfaeinia H, Shahsavani A, Norouzian A, Dowlati M. Investigation of relationship between particulate matter (PM2. 5) and meteorological parameters in Isfahan, Iran. J Air Pollut Health. 2020;5(2):97–106.

    Google Scholar 

  16. Liu K, Ren J. Characteristics, sources and health risks of PM2. 5-bound potentially toxic elements in the northern rural China. Atmos Pollut Res. 2019;10(5):1621–6.

    Article  CAS  Google Scholar 

  17. Li W, Xu L, Liu X, Zhang J, Lin Y, Yao X, Gao H, Zhang D, Chen J, Wang W. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci Adv. 2017;3(3):e1601749.

    Article  Google Scholar 

  18. Domingo JL, García F, Nadal M, Schuhmacher M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ Res. 2017;154:269–74.

    Article  CAS  Google Scholar 

  19. Rahama SM, Khider HE, Mohamed SNH, Abuelmaali SA, Elaagip AH. Environmental pollution of lead in traffic air and blood of traffic policemen in Khartoum State, Sudan. East Afr J Public Health. 2011;8(2):148–51.

    Google Scholar 

  20. Happo M, Salonen R, Hälinen A, Jalava P, Pennanen A, Dormans J, Gerlofs-Nijland M, Cassee F, Kosma V-M, Sillanpää M. Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol. 2010;22(5):402–16.

    Article  CAS  Google Scholar 

  21. Chen P, Bi X, Zhang J, Wu J, Feng Y. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2. 5 in Tianjin, China. Particuology. 2015;20:104–9.

    Article  CAS  Google Scholar 

  22. Kermani M, Jafari AJ, Gholami M, Fanaei F, Arfaeinia H. Association between meteorological parameter and PM2. 5 concentration in Karaj, Iran. Int J Environ Health Eng. 2020;9(1):4.

    CAS  Google Scholar 

  23. EPA. Compendium method TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. In Compendium of methods for the determination of toxic organic compounds in ambient air, 2nd ed., EPA/625/R-96/010b.1999. https://www3.epa.gov/ttnamti1/.

  24. Rohra H, Tiwari R, Khare P, Taneja A. Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of northern India. Sci Total Environ. 2018;631:1383–97.

    Article  Google Scholar 

  25. Tahir NM, Poh S, Suratman S, Ariffin M, Shazali N, Yunus K. Determination of trace metals in airborne particulate matter of Kuala Terengganu, Malaysia. Bull Environ Contam Toxicol. 2009;83(2):199–203.

    Article  Google Scholar 

  26. Pandey B, Agrawal M, Singh S. Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos Pollut Res. 2014;5(1):79–86.

    Article  Google Scholar 

  27. Farrokhzadeh H, Jafari N, Sadeghi M, Talesh Alipour M, Amin MM, Abdolahnejad A. Estimation of spatial distribution of PM10, lead, and radon concentrations in Sepahanshahr, Iran using Geographic Information System (GIS). J Mazandaran Univ Med Sci. 2018;27(159):84–96.

    Google Scholar 

  28. Chen X, Lu X. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicol Environ Saf. 2018;151:153–60.

    Article  CAS  Google Scholar 

  29. Mojarrad H, Fouladi Fard R, Rezaali M, Heidari H, Izanloo H, Mohammadbeigi A, et al. Spatial trends, health risk assessment and ozone formation potential linked to BTEX. Hum Ecol Risk Assess. 2020;26(10):2836–57.

  30. Mohammadi A, Hajizadeh Y, Taghipour H, Mosleh Arani A, Mokhtari M, Fallahzadeh H. Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Hum Ecol Risk Assess Int J. 2018;24(8):2070–87.

    Article  CAS  Google Scholar 

  31. Mohammadi A, Ghassoun Y, Löwner M-O, Behmanesh M, Faraji M, Nemati S, Toolabi A, Abdolahnejad A, Panahi H, Heydari H. Spatial analysis and risk assessment of urban BTEX compounds in Urmia, Iran. Chemosphere. 2020;246:125769.

    Article  CAS  Google Scholar 

  32. Wang F, Wang J, Han M, Jia C, Zhou Y. Heavy metal characteristics and health risk assessment of PM2. 5 in students’ dormitories in a university in Nanjing, China. Build Environ. 2019;160:106206.

    Article  Google Scholar 

  33. U.S. Environmental Protection Agency. Risk assessment guidance for Superfund, Vol 1: Human health evaluation manual. Part A, Interim Final. EPA 540/1-89/002. Office of Emergency and Remedial Response, Washington, DC.1989.

  34. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 2014;468:843–53.

    Article  Google Scholar 

  35. Karimi A, Shirmardi M, Hadei M, Birgani YT, Neisi A, Takdastan A, Goudarzi G. Concentrations and health effects of short-and long-term exposure to PM2. 5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicol Environ Saf. 2019;180:542–8.

    Article  CAS  Google Scholar 

  36. Asl FB, Leili M, Vaziri Y, Arian SS, Cristaldi A, Conti GO, Ferrante M. Health impacts quantification of ambient air pollutants using AirQ model approach in Hamadan, Iran. Environ Res. 2018;161:114–21.

    Article  Google Scholar 

  37. Miri A, Ahmadi H, Ghanbari A, Moghaddamnia A. Dust storms impacts on air pollution and public health under hot and dry climate. Int J Energy Environ. 2007;2(1):101–5.

    Google Scholar 

  38. Ghasemi FF, Dobaradaran S, Saeedi R, Nabipour I, Nazmara S, Abadi DRV, Arfaeinia H, Ramavandi B, Spitz J, Mohammadi MJ. Levels and ecological and health risk assessment of PM 2.5-bound heavy metals in the northern part of the Persian Gulf. Environ Sci Pollut Res. 2020;27(5):5305–13.

    Article  Google Scholar 

  39. Wang Y, Zhuang G, Zhang X, Huang K, Xu C, Tang A, Chen J, An Z. The ion chemistry, seasonal cycle, and sources of PM2. 5 and TSP aerosol in Shanghai. Atmos Environ. 2006;40(16):2935–52.

    Article  CAS  Google Scholar 

  40. Zhang P, Hong B, He L, Cheng F, Zhao P, Wei C, Liu Y. Temporal and spatial simulation of atmospheric pollutant PM2. 5 changes and risk assessment of population exposure to pollution using optimization algorithms of the back propagation-artificial neural network model and GIS. Int J Environ Res Public Health. 2015;12(10):12171–95.

    Article  CAS  Google Scholar 

  41. Tai AP, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: Implications for the sensitivity of PM2. 5 to climate change. Atmos Environ. 2010;44(32):3976–84.

    Article  CAS  Google Scholar 

  42. Ho K, Lee S, Chan CK, Jimmy CY, Chow JC, Yao X. Characterization of chemical species in PM2. 5 and PM10 aerosols in Hong Kong. Atmos Environ. 2003;37(1):31–9.

    Article  CAS  Google Scholar 

  43. Shahid I, Kistler M, Mukhtar A, Ghauri BM, Ramirez-Santa Cruz C, Bauer H, Puxbaum H. Chemical characterization and mass closure of PM10 and PM2. 5 at an urban site in Karachi–Pakistan. Atmos Environ. 2016;128:114–23.

    Article  CAS  Google Scholar 

  44. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen L-C, Maciejczyk P. Source apportionment and elemental composition of PM2. 5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res. 2012;3(3):331–40.

    Article  CAS  Google Scholar 

  45. Marcazzan G, Ceriani M, Valli G, Vecchi R. Source apportionment of PM10 and PM2. 5 in Milan (Italy) using receptor modelling. Sci Total Environ. 2003;317(1–3):137–47.

    Article  CAS  Google Scholar 

  46. Gholampour A, Nabizadeh R, Hassanvand MS, Nazmara S, Mahvi AH. Elemental composition of particulate matters around Urmia Lake, Iran. Toxicol Environ Chem. 2017;99(1):17–31.

    Article  CAS  Google Scholar 

  47. Shahsavani A, Naddafi K, Haghighifard NJ, Mesdaghinia A, Yunesian M, Nabizadeh R, Arahami M, Sowlat M, Yarahmadi M, Saki H. The evaluation of PM10, PM2. 5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. J Arid Environ. 2012;77:72–83.

    Article  Google Scholar 

  48. Barraza F, Jorquera H, Valdivia G, Montoya LD. Indoor PM2. 5 in Santiago, Chile, spring 2012: Source apportionment and outdoor contributions. Atmos Environ. 2014;94:692–700.

    Article  CAS  Google Scholar 

  49. Hsu C-Y, Chiang H-C, Lin S-L, Chen M-J, Lin T-Y, Chen Y-C. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Sci Total Environ. 2016;541:1139–50.

    Article  CAS  Google Scholar 

  50. Deng W, Louie P, Liu W, Bi X, Fu J, Wong MH. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2. 5 at an electronic waste recycling site in southeast China. Atmos Environ. 2006;40(36):6945–55.

    Article  CAS  Google Scholar 

  51. Ansari M, Ehrampoush MH. Meteorological correlates and AirQ + health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ Res. 2019;170:141–50.

    Article  CAS  Google Scholar 

  52. Hou X, Fei D, Kang H, Zhang Y, Gao J. Seasonal statistical analysis of the impact of meteorological factors on fine particle pollution in China in 2013–2017. Nat Hazards. 2018;93(2):677–98.

    Article  Google Scholar 

  53. Wang H, Li J, Peng Y, Zhang M, Che H, Zhang X. The impacts of the meteorology features on PM2. 5 levels during a severe haze episode in central-east China. Atmos Environ. 2019;197:177–89.

    Article  CAS  Google Scholar 

  54. Ilten N, Selici AT. Investigating the impacts of some meteorological parameters on air pollution in Balikesir, Turkey. Environ Monit Assess. 2008;140(1–3):267–77.

    Article  CAS  Google Scholar 

  55. Yongming H, Peixuan D, Junji C, Posmentier ES. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ. 2006;355(1–3):176–86.

    Article  Google Scholar 

  56. Wu S, Peng S, Zhang X, Wu D, Luo W, Zhang T, Zhou S, Yang G, Wan H, Wu L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J Geochem Explor. 2015;148:71–8.

    Article  CAS  Google Scholar 

  57. Awad AHA. Airborne asbestos fibres and mesothelioma in the last 20 years in Egypt: a review. Atmos Pollut Res. 2011;2(4):445–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is the result of MSc approved thesis, research project no. 33150. Thus, the authors are thankful for the funding provided by the Department of Environmental Health Engineering Research Center of Environmental Health Technology, Iran University of Medical Sciences.

Funding

Support of this work by Recerch Center of Environmental Health Tecnology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Fanaei.

Ethics declarations

Ethical approval

The authors of this article have covered all the ethical points, including non-plagiarism, duplicate publishing, data distortion, and data creation in this article. This project has been registered in Iran University of Medical Sciences with the code of ethics of IR.IUMS.REC.1397.312.

Conflict of interest

The authors of this article declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermani, M., Jonidi Jafari, A., Gholami, M. et al. Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran. J Environ Health Sci Engineer 19, 151–163 (2021). https://doi.org/10.1007/s40201-020-00589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00589-3

Keywords

Navigation