Skip to main content
Log in

Comments on J. J. Smulsky’s Paper “A New Theory of the Earth Insolation Change over Millions of Years against Marine Isotope Stages”

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Insolation calculations for solving the two-body problem have been analyzed. The errors associated with the simplification of the calculation algorithm of insolation and disregard (simultaneously) of the attraction of planets of the solar system and their satellites in calculations of the Earth’s irradiation have been indicated. The use of the method of equivalent latitudes in paleoclimatology has been shown to be inconsistent. The need to take into account changes in the meridional insolation gradient, which regulates the meridional heat transfer from the equator to polar regions, in paleoclimatology and paleogeography has been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arnold, V.I., Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Mat. Nauk, 1963, vol. 18, no. 6 (114), pp. 91–192.

  2. Berger, A., Long-term variation of daily insolation and quaternary climatic change, J. Atmos. Sci., 1978, vol. 35, no. 12, pp. 2362–2367.

    Article  Google Scholar 

  3. Berger, A., Loutre, M.F., and Yin, Q., Total irradiation during any time interval of the year using elliptic integrals, Quat. Sci. Rev., 2010, vol. 29, pp. 1968–1982. https://doi.org/10.1016/j.quascirev.2010.05.07

    Article  Google Scholar 

  4. Bertrand, C., Loutre, M.F., and Berger, A., High frequency variations of the Earth’s orbital parameters and climate change, Geophys. Res. Lett., 2002, vol. 29, no. 18, pp. 40-1–40-3. https://doi.org/10.1029/2002GL015622

  5. Brouwer, D. and van Woerkom, A.J.J., The secular variation of the orbital elements of the principal planets, Astron. Pap., 1950, vol. 13, pp. 81–107.

    Google Scholar 

  6. Budyko, M.I., Izmenenie klimata (Climate Change), Leningrad: Gidrometeoizdat, 1974.

  7. Cionco, R.G. and Soon, W.W.-H., Short-term orbital forcing: A quasi-review and a reappraisal of realistic boundary conditions for climate modeling, Earth-Sci. Rev., 2017, vol. 166, pp. 206–222.

    Article  Google Scholar 

  8. Darwin, G.H., The Tides and Kindred Phenomena in the Solar System, Boston, MA: Houghton, Mifflin and Co., 1898.

    Google Scholar 

  9. Devis, B.A.S. and Brewer, S., Orbital forcing and role of the latitudinal insolation/temperature gradient, Clim. Dyn., 2009, vol. 32, pp. 143–165. https://doi.org/10.1007/S00382-008-0480-9

    Article  Google Scholar 

  10. Duboshin, G.N., Osnovy teorii ustoichivosti dvizheniya (Fundamentals of the Motion Stability Theory), Moscow: Mosk. Gos. Univ., 1952.

  11. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics: Basic Tasks and Methods), Moscow: Nauka, 1975.

  12. Duboshin, G.N., Nebesnaya mekhanika. Analiticheskie i kachestvennye metody (Celestial Mechanics: Analytical and Qualitative Methods), Moscow: Nauka, 1978.

  13. Fedorov, V.M., Interannual variations in the duration of the tropical year, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 750–753. https://doi.org/10.1134/S1028334X13070015

    Article  Google Scholar 

  14. Fedorov, V.M., Spatial and temporal variations in solar climate of the Earth in the present epoch, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 779–791. https://doi.org/10.1134/S0001433815080034

    Article  Google Scholar 

  15. Fedorov, V.M., Theoretical calculation of the interannual variability of the Earth’s insolation with daily resolution, Sol. Syst. Res., 2016, vol. 50, no. 3, pp. 220–224. https://doi.org/10.1134/S0038094616030011

    Article  Google Scholar 

  16. Fedorov, V.M., Solnechnaya radiatsiya i klimat Zemli (Solar Radiation and the Earth’s Climate), Moscow: Fizmatlit, 2018.

  17. Fedorov, V.M., Earth’s insolation variation and its incorporation into physical and mathematical climate models, Phys.-Usp., 2019a, vol. 62, no. 1, pp. 32–45.

    Article  Google Scholar 

  18. Fedorov, V.M., The problem of meridional heat transport in the astronomical climate theory, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, pp. 1572–1573. https://doi.org/10.1134/S0001433819100025

    Article  Google Scholar 

  19. Fedorov, V.M. and Frolov, D.M., Spatial and temporal variability of solar radiation arriving at the top of the atmosphere, Cosmic Res., 2019, vol. 57, no. 3, pp. 156–162.

    Article  Google Scholar 

  20. Fedorov, V.M. and Kostin, A.A., Calculation of insolation of the Earth from 3000 BC to 2999 AD, Protsessy v Geosredakh, 2019, no. 2, pp. 254–262.

  21. Flammarion, C., Astronomie Populaire (Popular Astronomy) Paris, 1880; St. Petersburg: SPb. elektropechatnya, 1902.

  22. Imbrie, J. and Imbrie, K.P., Ice Ages (Solving the Mystery), Cambridge, MA: Harvard Univ. Press, 1986.

    Google Scholar 

  23. Lagrange, J.-L., Œuvres, vol. 5, Théorie des variations séculaires des éléments des planètes (Collected Works. Vol.5. Theory of Secular Variations of the Elements of the Planets), Berlin: Decker, 1781, pp. 125–207.

  24. Laplace, P.S., Le systeme du monde (System of the World), Paris: 1795.

  25. Laplace, P.S., Traité de mécanique celeste (A Treatise on Celestial Mechanics), Paris: Bachelier Libr., 1825.

  26. Laskar, J., Large-scale chaos and marginal stability in the Solar system, in Rezonansy v nebesnoi mekhanike (Resonances in Celestial Mechanics), Izhevsk: In-t. Komp. Issled., 2006, pp. 247–303.

    Google Scholar 

  27. Laskar, J. and Robutel, P., The chaotic obliquity of the planet, Nature, 1993, vol. 361, pp. 608–612.

    Article  Google Scholar 

  28. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B.A. Long-term numerical solution for the Earth, Icarus, 2004, vol. 170, no. 2, pp. 343–364.

    Article  Google Scholar 

  29. Le Verrier, U.J., Ann. de l’Observatoire impérial de Paris (Annals of the Paris Imperial Observatory), Paris, 1855, vol. I.

  30. Lorenz, E.N., Climatic determinism, Meteorol. Monogr., 1968, vol. 8, no. 30, pp. 1–3.

    Google Scholar 

  31. Lyapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya (General Problem of the Stability of Motion), Moscow–Leningrad: GITTL, 1950.

  32. Mel’nikov, V.P. and Smul’skii, I.I., Astronomicheskaya teoriya lednikovykh periodov: Novye priblizheniya. Reshennye i nereshennye problemy (Astronomical Theory of Glacial Ages: New Approximations. Solved and Unsolved Problmems), Novosibirsk: GEO, 2009.

  33. Milankovich, M., Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen (Mathematical Climatology and Astronomical Theory of Climate Oscillations), Berlin: Gebrüder Bornträger, 1930.

  34. Murray, C.D. and Dermott, S.F., Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  35. Sharaf, Sh.G. and Budnikova, N.A., On secular variations in the Earth’s orbital elements that affect the climates of geological past, Byull. Inst. teor. astron. Akad. Nauk SSSR, 1967, vol. 11, no. 4 (127), pp. 231–261.

  36. Sharaf, Sh.G. and Budnikova, N.A., Oscillations in the Earth’s solar radiation caused by secular changes in the Earth’s orbital elements, Dokl. Akad. Nauk SSSR, 1968, vol. 182, no. 2, pp. 291–293.

    Google Scholar 

  37. Sharaf, Sh.G. and Budnikova, N.A., Secular variations in the Earth’s orbital elements and the astronomical theory of climate oscillations, Tr. Inst. Teor. Astronomii AN SSSR, 1969, no. 14, pp. 48–84.

  38. Smul’skii, I.I., New results on the Earth’s insolation and their correlation with the paleoclimate of Western Siberia in the Late Pleistocene, Geol. Geofiz., 2016, vol. 57, no. 7, pp. 1393–1407.

    Google Scholar 

  39. Smul’skii, I.I., A new theory of changes in the Earth’s insolation over millions of years and marine isotope stages, Geofiz. Prots. Biosfera, 2020, vol. 19, no. 1, pp. 96–121.

    Google Scholar 

  40. Smul’skii, I.I. and Krotov, O.I., Novyi algoritm rascheta insolyatsii Zemli (New algorithm for calculating Earth’s insolation), Available from VINITI, 2013, Tyumen’, no. 103-B2013.

  41. Smul’skii, I.I. and Sechenov, K.E., Uravneniya vrashchatel’nogo dvizheniya Zemli i ikh resheniya pri vozdeistvii Solntsa i planet (The equations of rotational motion of the Earth and their solutions under the influence of the Sun and planets), Available from VINITI, 2007, Tyumen’, no. 492-B2007.

  42. Shuleikin, V.V., Fizika morya (Marine Physics), Moscow: Izd. AN SSSR, 1953.

  43. Ushakov, S.A. and Yasamanov, N.A., Dreif materikov i klimaty Zemli (Continental Drift and the Earth’s Climates), Moscow: Mysl’, 1984.

  44. Velichko, A. A., Prirodnyi protsess v pleistotsene (Natural Processes in the Pleistocene), Moscow: Nauka, 1973.

  45. Vernekar, A., Long-period global variations of incoming solar radiation, Meteorol. Monogr., 1972, vol. 12, no. 34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fedorov.

Ethics declarations

The author declares that there is no conflict of interests.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.M. Comments on J. J. Smulsky’s Paper “A New Theory of the Earth Insolation Change over Millions of Years against Marine Isotope Stages”. Izv. Atmos. Ocean. Phys. 56, 748–755 (2020). https://doi.org/10.1134/S0001433820070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820070038

Keywords:

Navigation