Skip to main content
Log in

Parameters of the Rupture Planes of the Spitak Focal Zone Constructed by Averaged Aftershock Mechanisms

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The focal mechanisms of aftershocks of the focal zone of the Spitak earthquake of December 7, 1988, have been constructed. The method of averaged mechanisms is applied using data from the international seismological center. Along the boundaries of active faults of the study area, four blocks are distinguished with pairs of compressive tension forces different in directions. The prevailing types of movements in the foci of the Spitak earthquake aftershocks are revealed. It is shown that the prevailing uplift type of movement in the aftershock foci changes from the rupture of the Spitak earthquake in the northern and southeastern direction to the predominant shear type. Solutions of the averaged mechanisms for the selected blocks, the parameters of faults, the angles of incidence and strike, and the types of movements are obtained. It is shown that the nodal planes reflect tectonically active faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aki, K., Earthquake generation stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns, Bull. Earthquake Res. Inst., Univ. Tokyo, 1966, vol. 44 (2), pp. 447–471.

    Google Scholar 

  2. Aptekman, Zh.Ya., Lander, A.V., Dorbath, C., and Dorbath, L., Processes in the source zone of the Spitak earthquake based on the focal mechanisms of its aftershocks, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1991, no. 11, pp. 96–105.

  3. Aref’ev, S.S., Epicentral’nye seismologicheskie issledovaniya (Epicentral Seismological Studies), Moscow: Akademkniga, 2003.

  4. Aref’ev, S.S., Aptekman, Zh.Ya., Afim’ina, T.B., Gabsatarova, I.P., Geodakyan, E.G., Zakharova, A.I., Lander, A.V., Pletnev, K.G., Tatevossian, R.E., Shebalin, N.V., Shilova, N.E., Dorbath, L., Dorbath, C., Cisternas, A., Essler, A., and Rivera, L., Catalog of aftershocks of the Spitak earthquake of December 7, 1988, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1991, no. 11, pp. 60–73.

  5. Avetisyan, A.M., Burmin, V.Yu., Karapetyan Dzh.K., and Kazaryan, K.S., Analysis of the results of depth assessment of Spitak earthquake aftershocks, Dokl. Akad. Nauk Arm., 2018, vol. 118, no. 4. pp. 321–330.

    Google Scholar 

  6. Bagdasaryan, A.R. and Karakhanyan, A.S., New data on slip kinematics in the Akhuryan Fault zone (Republic of Armenia), Izv. Akad. Nauk Arm., Nauki Zemle, 2016, vol. 69, no. 1, pp. 3–11.

    Google Scholar 

  7. Burmin, V.Yu., A new approach to determination of hypocentral parameters of near earthquakes, Vulkanol. Seismol., 1992, no. 3, pp. 73–82.

  8. Burmin, V.Yu., Aftershocks of the Racha earthquake of April 29, 1991, Vopr. Inzh. Seismol., 2016, vol. 43, no. 4, pp. 61–65.

    Google Scholar 

  9. Burmin, V.Yu., Shemeleva, I.B., Fleyfel, L.D., Avetisyan, A.M., and Kazaryan, K.S., Results of seismological data processing for the territory of Armenia, Seism. Instrum., 2016, vol. 53, pp. 103–110.

    Article  Google Scholar 

  10. Davtyan, V., Doerflinger, E., Karakhanyan, A., Philip, H., Avagyan, A., Champollion, C., and Aslanyan, R., Fault slip rates in Armenia by the GPS data, Izv. Akad. Nauk Arm., Nauki Zemle, 2006, vol. 59, no. 2. pp. 3–18.

    Google Scholar 

  11. Deschamps, A., Lyon-Caen, H., and Madariaga, R. Development of calculation methods for long-term synthetic seismograms, Ann. Geophys., 1980, vol. 36, no. 2, pp. 167–178.

    Google Scholar 

  12. Dorbath, C., Dorbath, L., Aptekman, Zh.Ya., Borisov, B.A., Kronrod, T.L., and Fuenzalida, A., Geometry of the Spitak earthquake’s source from the detailed studies of its aftershocks, Fiz. Zemli, 1991, no. 11, pp. 86–95.

  13. Dorbath, L., Dorbath, C., Rivera, L., Fuenzalida, A., Cisternas, A., Tatevossian, R., Aptekman, J., and Arefiev, S., Geometry, segmentation and stress regime of the Spitak (Armenia) earthquake from the analysis of the aftershock sequence, Geophys. J. Int., 1992, vol. 108, pp. 309–328.

    Article  Google Scholar 

  14. Gabsatarova, I.P. and Baranov, S.V., New data on aftershocks of the December 7, 1988, Spitak earthquake, Seism. Instrum., 2018, vol. 54, pp. 144–157. https://doi.org/10.3103/S0747923918020044

    Article  Google Scholar 

  15. Haessler, H., Deschamps, A., Dufumier, H., Fuenzalida, H., and Cisternas, A., The rupture process of the Armenian earthquake from broad-band teleseismic body wave records, Geophys. J. Int., 1992, vol. 109, no. 1, pp. 151–161.

    Article  Google Scholar 

  16. Karakhanyan, A., Trifonov, V., Philip, H., Avagyan, A., Hessami, Kh., Jamali, F., Salih Bayraktutan, M., Bagdassarian, H., Arakelian, S., Davtian, V., and Adilkhanyan, A., Active faulting and natural hazards in Armenia, Eastern Turkey, and Northwestern Iran, Tectonophysics, 2004, vol. 380, no. 3–4, pp. 189–219.

    Article  Google Scholar 

  17. Karakhanyan, A., Vernant, P., Doerflinger, E., Avagyan, A., Philip, H., Aslanyan, R., Champollion, C., Arakelyan, S., Collard, P., Baghdasaryan, H., Peyret, M., Davtyan, V., Calais, E., and Masson, F., GPS constraints on continental deformation in the Armenian region and Lesser Caucasus, Tectonophysics, 2013, vol. 592, pp. 39–45.

    Article  Google Scholar 

  18. Karakhanyan, A., Arakelyan, A., Avagyan, A., and Sadoyan, T., Aspects of the seismotectonics of Armenia: New data and reanalysis, in Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions, Sorkhabi, R., ed., N.Y.: Geol. Soc. Am., 2017.

    Google Scholar 

  19. Kazaryan, K.S., Burmin, V.Yu., and Avetisyan, A.M., Spatial and temporal changes of block structure prevailing movement types of Javakheti Upland, Vopr. Inzh. Seismol., 2019, vol. 46, no. 3, pp. 95–109. https://doi.org/10.21455/VIS2019.3-6

    Article  Google Scholar 

  20. Kondorskaya, N.V., Vandysheva, N.V., Zakharova, A.I., Sargsyan, G.V., and Chepkunas, L.S., Analysis of the 1988 Spitak earthquake and its strong aftershocks based on the observations by stationary and teleseismic stations, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1991, no. 12, pp. 23–31.

  21. Lander, A.V., The FA2002 Program System to Determine the Focal Mechanisms of Earthquakes in Kamchatka, the Commander Islands and the Northern Kuriles. Rep. KEMSD GS RAS, Petropavlovsk-Kamchatsky: KEMSD GS RAS, 2004.

  22. Pacheco, J.F., Estabrook, C.H., Simpson, D.W., and Nabelek, J., Teleseismic body wave analysis of the 1988 Armenian Earthquake, Geophys. Res. Lett., 1989, vol. 16, no. 12, pp. 1425–1428.

    Article  Google Scholar 

  23. Philip, H., Avagyan, A., Karakhanyan, A., Ritz, J.-F., and Rebai, S., Slip rates and recurrence intervals of strong earthquakes along the Pambak-Sevan-Sunik Fault (Armenia), Tectonophysics, 2001, vol. 343, no. 3–4, pp. 205–232.

    Article  Google Scholar 

  24. Rebetskii, Yu.L., Aref’ev, S.S., and Nikitina, E.S., Monitoring of stressed state in the aftershock region of the Spitak Earthquake, Dokl., Earth Sci., 2000, vol. 375, no. 2. pp. 1329–1334.

    Google Scholar 

  25. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., AlAydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., and Karam, G., GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 2006, vol. 111, no. B5, B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  26. Richter, C.F., Elementary Seismology, San Francisco, W.H. Freeman and Co., 1958.

    Google Scholar 

  27. Shumlianskaya, L.A. and Burmin, V.Yu., Time variations in earthquake focal mechanisms of the Racha-Dzhava seismic zone, Izv., Atmos. Ocean. Phys., 2019, vol. 55, pp. 1726–1733. https://doi.org/10.1134/S0001433819110136

    Article  Google Scholar 

  28. Sidorin, A.Ya., The 1988 Spitak earthquake and some problems of engineering seismology, Seism. Instrum., 2019, vol. 55, no. 4, pp. 496–506. https://doi.org/10.3103/S0747923919040108

    Article  Google Scholar 

  29. Sidorin, A.Ya., A look at the 1988 Spitak earthquake in the light of lessons learned from the 1948 Ashgabat catastrophe, Izv., Atmos. Ocean. Phys., 2019, vol. 55, pp. 1774–1786. https://doi.org/10.1134/S0001433819110148

    Article  Google Scholar 

  30. Trifonov, V.G. and Karakhanyan, A.S., Dinamika Zemli i razvitie obshchestva (The Earth’s Dynamics and Social Evolution), Moscow: OGI, 2008.

  31. Trifonov, V.G., Karakhanyan, A.S., and Kozhurin, A.I., Active faults and seismicity, Priroda, 1989, no. 12, pp. 32–38.

  32. Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Methods and Results of the Study of Seismotectonic Deformations), Moscow: Nauka, 1990.

Download references

Funding

This study was carried out under the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Burmin.

Ethics declarations

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, K.S., Burmin, V.Y. & Avetisyan, A.M. Parameters of the Rupture Planes of the Spitak Focal Zone Constructed by Averaged Aftershock Mechanisms. Izv. Atmos. Ocean. Phys. 56, 706–712 (2020). https://doi.org/10.1134/S000143382007004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382007004X

Keywords:

Navigation