Skip to main content
Log in

Depth of Diagenetic Processes and Lower Boundary of the Biosphere in the South Caspian Basin

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

An assessment of the depth of the diagenetic zone and biosphere in the South Caspian Basin (SCB) is given based on a set of more than 400 measurements (lithological composition and reservoir properties of rocks, temperature, and pressure) on 41 onshore and offshore hydrocarbon fields; it is also based on about 200 isotope-geochemical analyses of gases and oils and hydrochemical analyses of formation waters. It is established that an extended diagenetic zone is formed in the SCB under conditions of an avalanche sedimentation rate in the Pliocene–Quaternary period and low temperature (temperature gradients were within 15–21°C/km). This is confirmed by the nature of the depth variations in the physical and mechanical parameters of the rock-fluid system in the SCB (water and gas saturation, porosity and permeability of sediments, temperature and pressure). From the point of view of oil and gas generation processes, the boundary between the end of the stage of late diagenesis and the beginning of the early catagenesis stage in the SCB is located at a depth of about 4.5 km, which corresponds of a vitrinite reflectance value of 0.5% and formation temperature of about 80°C. According to the isotope-geochemical parameters, microbiological activity, and biochemical processes, the lower boundary of the biosphere is outlined at a depth of about 2–2.5 km, which corresponds to a temperature of 45–50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Abioticheskie faktory: Elektronnyi uchebnik po biologii (Abiotic Factors: An Online Biology Textbook), 2017. https://bioslogos.ru/48-abioticheskie-faktory.html

  2. Ahern, R., What is diagenesis, catagenesis, and metagenesis. www.quora.com/What-is-diagenesis-catagenesis-and-metagenesis

  3. Artyushkov, E.V., “Formation of the south Caspian basin as a result of phase transitions in the lower continental crust,” Dokl. Earth Sci., 2007, vol. 417, no. 8, pp. 1141–1146.

    Article  Google Scholar 

  4. Axen, G.J., Lam, P.S., Grove, M., and Stockli, D.F., “Exhumation of the west-central Alborz mountains, Iran, Caspian subsidence, and collision-related tectonics,” Geology, 2001, vol. 29, pp. 559–562.

    Article  Google Scholar 

  5. Bernard, B.B., Brooks, J.M., and Sackett, W.M., “Natural gas seepage in the Gulf of Mexico,” Earth Planet. Sci. Lett., 1976, vol. 31, pp. 48–54.

    Article  Google Scholar 

  6. Berner, R.A., Early Diagenesis: A Theoretical Approach, Princeton, NJ: Princeton Univ. Press, 1980.

    Book  Google Scholar 

  7. Bordenave, M.L., Applied Petroleum Geochemistry, Paris: Editions Technip, 1993.

    Google Scholar 

  8. Bruce, C.H., “Smectite dehydration and its relationship to structural development and hydrocarbon accumulation in the northern Gulf of Mexico basin,” AAPG Bull., 1984, vol. 68, pp. 673–683.

    Google Scholar 

  9. Brunet, M.F.O., Korotaev, M.V., Ershov, A.V., and Nikishin, A., “The south Caspian basin: a review of its evolution from subsidence modeling,” Sediment. Geol., 2003, vol. 156, pp. 119–148.

    Article  Google Scholar 

  10. Burley, S.D., Kantorowicz, J.D., and Waugh, B., Clastic diagenesis, Geol. Soc. London, Spec. Publ., 1985, vol. 18, no. 1, pp. 189–226. https://doi.org/10.1144/GSL.SP.1985.018.01.10

    Article  Google Scholar 

  11. Buryakovskii, L.A., Dzhafarov, I.S., and Dzhevanshir, R.D., Prognozirovanie fizicheskikh svoistv kollektorov i pokryshek nefti i gaza (Forecasting the Physical Properties of Oil and Gas Collectors and Seals), Moscow: Nedra, 1982.

  12. Buryakovskii, L.A., Dzhevanshir, R.D., and Aliyarov, R.Yu., Geofizicheskie metody izucheniya geoflyuidal’nykh davlenii (Geophysical Methods of Geofluid Pressure Study), Baku: Elm, 1986.

  13. Busch, W.H., Patterns of sediment compaction at ocean drilling program sites 645, 646, and 647, Baffin Bay and Labrador Sea, Proc. Ocean Drill. Program: Sci. Results, 1989, vol. 105, pp. 781–790.

    Google Scholar 

  14. Clay Minerals in Nature: Their Characterization, Modification and Application, Valaskova, M. and Martynková, G.S., Eds., London: InTech, 2012.

    Google Scholar 

  15. Claypool, R.E. and Kvenvolden, K.A., “Methane and other hydrocarbon gases in marine sediment,” Annu. Rev. Earth Planet. Sci., 1983, vol. 11, pp. 299–327.

    Article  Google Scholar 

  16. Connan, J., in Advances in Petroleum Geochemistry, Welte, D.H., Ed., London: Acad. Press, 1984, pp. 299–330.

    Google Scholar 

  17. Curtis, C.D., Possible links between sandstone diagenesis and depth-related geochemical reactions in enclosing mudstones, J. Geol. Soc. (London, U. K.), 1978, vol. 135, pp. 107–118.

    Article  Google Scholar 

  18. Degens, E.T., Diagenesis of organic matter, in Developments in Sedimentology, 1967, vol. 8, pp. 343–390.

    Article  Google Scholar 

  19. Dickinson, G., “Geological aspects of abnormal reservoir pressures in Gulf Coast, Louisiana,” AAPG Bull., 1953, vol. 37, pp. 410–432.

    Google Scholar 

  20. Dódony, I., and Lovas, Gy. A., “Crystal chemistry of clay-minerals around the border of an overpressure zone in one of the deep sub-basins of the southern part of the great Hungarian plain,” Acta Min.-Petrogr. Abstr. Ser. 1., 2003, p. 26.

  21. Diagenesis, Mcllreath, I.A. and Morrow, D.W., Eds., Geol. Assoc. Canada, 1990.

    Google Scholar 

  22. Engel’gardt, V., Porovoe prostranstvo osadochnykh porod (Pore Space of Sedimentary Rocks) Moscow: Nedra, 1964.

  23. Eremchenko, O.Z., Uchenie o biosfere: Ucheb. posobie (Biosphere Science: A Study Guide), Moscow: Yurait, 2019, 3rd ed.

  24. Feyzullaev, A.A. and Movsumova, U.A., “The nature of the isotopically heavy carbon of carbon dioxide and bicarbonates in the waters of mud volcanoes in Azerbaijan,” Geochem. Int., 2010, vol. 48, pp. 517–522.

    Article  Google Scholar 

  25. Feyzullaev, A.A. and Tagiev, M.F., “Formation of oil and gas deposits in the productive stratum of the South Caspian basin: New approaches and results,” Azerb. Neft. Khoz., 2008, no. 3, pp. 7–18.

  26. Fergusson, L.J., The Mineralogy, Geochemistry and Origin of Lower Tertiary Smectite-Mudstones, East Coast Deformed Belt, New Zealand, PhD thesis, Christchurch, NZ: Univ. of Canterbury, 1985.

  27. Fertl, W.H., Abnormal formation pressures, in Developments in Petroleum Science, Amsterdam: Elsevier, 1976.

    Google Scholar 

  28. Feyzullayev, A.A. and Lerche, I., “Occurrence and nature of overpressure in the sedimentary section of the South Caspian basin, Azerbaijan,” Energy Explor. Exploit., 2009, vol. 27, no. 5, pp. 345–366.

    Article  Google Scholar 

  29. Flemings, P.B., Huffman, A., Thomson, J.A., Maler, M.O., and Swarbrick, R.E., Overpressure and fluid flow processes in the deep water, in Gulf of Mexico: Slope Stability, Seeps, and Shallow Water Flow, 2002, pp. 1–25. http://hydro.geosc.psu.edu/Odp/12_14 web.pdf

    Google Scholar 

  30. Foscolos, A.E., Powell, T.G., and Gunter, P.R., “The use of clay minerals, inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales,” Geochim. Cosmochim. Acta, 1976, vol. 40, pp. 953–960.

    Article  Google Scholar 

  31. Frolov, V.T., Litologiya: Ucheb. posobie (Lithology: A Study Guide), Moscow: Mos. Gos. Univ., 1992, p. 336.

  32. Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow: Nedra, 1968.

  33. Govier, B., Diagenesis is the conversion of unconsolidated sediments into rock: The transition from diagenesis to metamorphism is somewhat. Presentation. 2014. https://slideplayer.com/slide/4142476/

  34. Granitsy biosfery. Ekologiya: Sprav. (Biosphere Boundaries, Ecology: A Reference Source), 2018. https://ru-ecology. info/term/25108/

  35. Guliyev, I.S., Levin, L.E., and Fedorov, D.L., Hydrocarbons Potential of the Caspian Region: System Analysis, Baku: Nafta-Press, 2003.

    Google Scholar 

  36. Gümbel, C.W., Gründzüge Geologie (Fundamentals of Geology), Kassel: Th.Fischer, 1988.

  37. Hall, L., Palu, T., Murray, A.P., Edwards, D., Hill, A., and Troup, A., “Cooper basin petroleum systems analysis: regional hydrocarbon prospectivity of the Cooper basin. pt. 3,” Geosci. Austral. Rec., 2016, no. 29. https://doi.org/10.11636/Record.2016.029

  38. Head, I.M., Jones, D.M., and Larter, S.R., “Biological activity in the deep subsurface and the origin of heavy oil,” Nature, 2003, vol. 426, pp. 344–353.

    Article  Google Scholar 

  39. Head, I.M., Larter, S.R., Gray, N.D., et al., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010.

    Google Scholar 

  40. Heberling, C., Lowell, R.P., Liu, L., and Fisk, M., “Extent of the microbial biosphere in the oceanic crust,” Geochem., Geophys., Geosyst., 2010, vol. 11, no. 8, p. Q08003. https://doi.org/10.1029/2009GC002968

    Article  Google Scholar 

  41. Hiatt, E.E. and Kyser, K., Links between depositional and diagenetic processes in basin analysis: porosity and permeability evolution in sedimentary rocks, in Fluids and Basin Evolution, Ontario, Canada: Dept. Geol. Sci. Geol. Eng. Queen’s Univ. Kingston, 2000, pp. 63–92.

    Google Scholar 

  42. Hoffman, J. and Hower, J., Clay mineral assemblages as low grade metamorphic geotermometers: Ap-plication to the trust faulted disturbed belt of Montana, in Aspects of Diagenesis, Scholle, P.A. and Schluger, P.S., Eds., Tulsa, OK: SEPM, 1979, pp. 55–79.

    Google Scholar 

  43. Holler, T., Wegener, G., Niemann, H., Deusner, C., Ferdelman, T.G., Boetius, A., Brunner, B., and Widdel, F., “Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction,” Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp E1484–E1490.

    Article  Google Scholar 

  44. Horsfield, B. and Rullkotter, J., Diagenesis, catagenesis, and metagenesis of organic matter, in The Petroleum System: From Source to Trap. Ch. 10: Pt. III. Processes. AAPG Spec. Vol., Magoon, L.B. and Dow, W.G., Eds., Tulsa, OK: AAPG, 1994, pp. 189–199. https://doi.org/10.1306/M60585C10.

  45. Houseknecht, D.W., “Assessing the relative importance of compaction processes and cementation to reduction of porosity,” AAPG Bull., 1987, vol. 71, pp. 633–642.

    Google Scholar 

  46. Inagaki, F., Hinrichs, K.U., Kubo, Y., et al., “Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor,” Science, 2015, vol. 349, pp. 420–424.

    Article  Google Scholar 

  47. Jackson, J., Priestley, K., Allen, M., and Berberian, M., “Active tectonics of the south Caspian basin,” Geophys. J. Int., 2002, vol. 148, pp. 214–245.

    Google Scholar 

  48. Jeffrey, A.W.A., Alimi, H.M., and Jenden, P.D., “Geochemistry of the Los Angeles Basin oil and gas systems,” in AAPG Mem., 1991, vol. 52, pp. 197–219.

    Google Scholar 

  49. Jimenez, N., Richnow, H.H., Vogt, C., Treude, T., and Kruger, M., “Methanogenic hydrocarbon degradation: evidence from field and laboratory studies,” J. Mol. Microbiol. Biotechnol., 2016, vol. 26, pp. 227–242. https://doi.org/10.1159/000441679

    Article  Google Scholar 

  50. Kallmeyer, J., Pockalny, R., Adhikari, R.R., Smith, D.C., and D’Hondt, S., “Global distribution of microbial abundance and biomass in subseafloor sediment,” Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 40, pp. 16213–16216. https://doi.org/10.1073/pnas.1203849109

    Article  Google Scholar 

  51. Katz, B.J., “Microbial processes and natural gas accumulations,” The Open Geol. J., 2011, vol. 5, pp. 75–83.

    Google Scholar 

  52. Kellermann, M.Y., Wegener, G., Elvert, M., Yoshinaga, M.Y., Lin, Y.-S., Holler, T., Mollar, X.P., Knittel, K., and Hinrichs, K.-U., “Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities,” Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 19, pp. 321–326.

    Article  Google Scholar 

  53. Kerimov, K.M., Rakhmanov, R.R., and Kheirov, M.B., Neftegazonosnost’ Yuzhno-Kaspiiskoi vpadiny (Oil and Gas Potential of the South Caspian Depression), Baku: Adyl’-ogly, 2001. Hyne, N.J., Nontechnical Guide to Petroleum Geology, Exploration, Drilling & Production, Tulsa, OK: PennWell Books, 2001.

  54. Khalilov, N.Yu. and Imanov, A.A., “Prognosis of anomalously high pool pressure in the process of prospecting drilling,” Geol. Nefti Gaza, 1980, no. 5, pp. 41–45.

  55. Khalilov, N.Yu. and Imanov, A.A., “The effect of anomalously high pool pressure on drilling parameters,” Neft. Khoz., 1979, no. 10, pp. 9–13.

  56. Hunt, J.M., Petroleum Geochemistry and Geology, Oxford: Freeman, 1979.

    Google Scholar 

  57. Kheirov, M.B., “The influence of the depths of sedimentary rocks on the transformation of clay minerals,” Izv. Akad. Nauk Az. SSR, Ser. Nauk Zemle, 1979, no. 8, pp. 144–151.

  58. Kholodov, V.N., “On the origin of mud volcanoes,” Priroda, 2001, no. 11, pp. 47–58.

  59. Laso-Perez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K.J., Krukenberg, V., Meier, D.V., Richter, M., Tegetmeyer, H.E., Riedel, D., et al., “Thermophilic archaea activate butane via alkyl coenzyme formation,” Nature, 2016, vol. 539, pp. 396–401.

    Article  Google Scholar 

  60. Leach, W.G., “Gulf coast tertiary-2 fluid migration, HC concentration in south Louisiana tertiary sands,” Oil Gas J., 1993, vol. 91, no. 11, pp. 71–74.

    Google Scholar 

  61. Logvinenko, N.V. and Orlova, L.V., Obrazovanie i izmenenie osadochnykh porod na kontinente i v okeane (The Formation and Transformation of Sedimentary Rocks in Continents and Oceans), Leningrad: Nedra, 1987.

  62. Madon, M.B., “Depositional and diagenetic histories of reservoir sandstones in the Jerneh field, central Malay basin,” Bull. - Geol. Soc. Malays., 1994, vol. 36, pp. 31–53.

    Google Scholar 

  63. Magara, K., “Reevaluation of montmorillonite dehydration as cause for abnormal pressure and hydrocarbon migration,” AAPG Bull., 1975, vol. 59, pp. 292–302.

    Google Scholar 

  64. Mamedov, P.Z., Genesis and seismic stratigraphic model of the south Caspian megabasin architecture, in The South-Caspian basin: Geology, Geophysics, Oil and Gas Content, Ali-Zadeh, A., Ed., Baku: Nafta-Press, 2004, pp. 150–164.

    Google Scholar 

  65. Marsden, S.S. and Kawai, K., “Suiyosel-ten’nengasu”, a special type of Japanese natural gas deposit, pt. 1,” AAPG Bull., 1965, vol. 49, no. 3, pp. 286–295.

    Google Scholar 

  66. Mattavelli, L. and Novelli, L., Geochemistry and habitat of the oils in Italy in Advances in Organic Geochemistry: Proc. 13th Int. Meeting on Organic Geochemistry (Venice, Italy, 21–25 September 1987), Mattavelli, L. and Novelli, L., Eds., Oxford: Pergamon, 1988, vol. 13, pp. 1–13. https://doi.org/10.1016/0146-6380(88)90021-6

  67. McKay, L., Klokman, V.W., Mendlovitz, H.P., LaRowe, D.E., Hoer, D.R., Albert, D., Amend, J.P., and Teske, A., “Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas basin,” Gulf of California, Environ. Microbiol. Rep., 2016, vol. 8, pp. 150–161.

    Article  Google Scholar 

  68. Miles, J.A., Illustrated Glossary of Petroleum Geochemistry, Oxford: Clarendon Press, 1989.

    Google Scholar 

  69. Milkov, A.V., “Methanogenic biodegradation of petroleum in the West Siberian basin (Russia): significance for formation of giant Cenomanian gas pools,” AAPG Bull., 2010, vol. 94, pp. 1485–541.

    Article  Google Scholar 

  70. Mondol, N.H., Fawad, M., Jahren, J., and Bjorlykke, K., “Synthetic mudstone compaction trends and their use in pore pressure prediction,” First Break, 2008, vol. 26, pp. 43–51.

    Article  Google Scholar 

  71. Nemchenko, N.N., Rovenskaya, A.S., and Shoell, M., “The origin of natural gas of the giant gas deposits in the north of West Siberia,” Geol. Nefti Gaza, 1999, no. 1–2, pp. 45–56.

  72. Nzoussi-Mbassani, P., Copard, Y., and Disnar, J.-R., “Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial,” Int. J. Coal Geol., 2005, vol. 61, pp. 223–239.

    Article  Google Scholar 

  73. Osipov, V.I., Sokolov, V.N., and Eremeev, V.V., Clay Seals of Oil and Gas Deposits, Lisse: A.A. Balkema, 2004.

    Google Scholar 

  74. Pallasser, R.J., “Recognizing biodegradation in gas/oil accumulations through the 13C compositions of gas components,” Org. Geochem., 2000, vol. 31, pp. 1363–1373.

    Article  Google Scholar 

  75. Parkes, R.J., Cragg, B.A., and Wellsbury, P., “Recent studies on bacterial populations and processes in subseafloor sediments: a review,” Hydrogeology, 2000, vol. 8, no. 1, pp. 11–28.

    Article  Google Scholar 

  76. Philip, H., Cisternas, A., Gvishiani, A., and Gorshkov, A., “The Caucasus: an actual example of the initial stages of continental collision,” Tectonophysics, 1989, vol. 161, pp. 1–21.

    Article  Google Scholar 

  77. Le Pichon, X., Henry, P., and Lallemant, S., “Water flow in the Barbados accretionary complex,” Geol. Soc. Am. Bull., 1990, vol. 95, pp. 8945–8967.

    Google Scholar 

  78. Rice, D.D., Biogenic gas: Controls, habitats, and resource potential in The Future of Energy Gases. USGS Prof. Pap.1570, Howell, D.G., Wiese, K., Fanelli, M., Zink, L.L., and Cole, F., Eds., Denver, CO: US Geol. Survey, 1993. pp. 583–606.

  79. Rice, D.D. and Claypool, G.E., “Generation, accumulation, and resource potential of biogenic gas,” AAPG Bull., 1981, vol. 65, pp. 5–25.

    Google Scholar 

  80. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W., and Widdel, F., “Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria,” Nature, 1994, vol. 372, pp. 455–458.

    Article  Google Scholar 

  81. Schoell, M., “The hydrogen and carbon isotopic composition of methane from natural gases of various origins,” Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 649–661.

    Article  Google Scholar 

  82. Serra, O., Fundamentals of well-log interpretation. Ch. 7. Information on diagenesis: Transformation of rocks and sediments, Dev. Pet. Sci., 1986, vol. 15 (Pt. B), pp. 341–366. https://doi.org/10.1016/S0376-7361(08)70584-3

  83. Shu, J., Clay minerals from the perspective of oil and gas exploration, in Clay Minerals in Nature: Their Characterization, Modification and Application, Valaskova, M. and Martynková, G.S., Eds., London: InTech, 2013, pp. 21–38. https://doi.org/10.5772/47790

    Book  Google Scholar 

  84. Smirnova, T.S., Hydrogeological and Geochemical Features of Hydrocarbon Positioning within the Karpinsky Swell, Cand. Sci. (Geol.-Min.) Dissertation, Saratov, 2009.

  85. Smith, J.E., “The dynamics of shale compaction and evolution of pore-fluid pressures,” Math. Geol, 1971, vol. 33, pp. 239–263.

    Article  Google Scholar 

  86. Spravochnik po litologii (Lithology Reference Book) Vassoevich, N.B, Librovich, V.L, Logvinenko, N.V, and Marchenko, V.I., Eds., Moscow: Nedra, 1983.

  87. Stopes, M.C., “On the petrology of banded bituminous coal,” Fuel, 1935, vol. 14, pp. 4–13.

    Google Scholar 

  88. Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of Lithogenesis Theory), Moscow: Izd-vo Akad. Nauk SSSR, 1962, 2nd ed.

  89. Temperature as an ecological factor, in Biologiya: Dlya abiturientov i uchitelei (Biology for High School Graduates and Teachers), 2016. https://jbio.ru/temperatura-kak-ekologicheskij-faktor

  90. Terzaghi, K., Theoretical Soil Mechanics, London: Chapman and Hall, 1943.

    Book  Google Scholar 

  91. Tingay, M.R. and Hillis, P.R., “In-situ stress and fluid pressures of Brunei Darussalam,” AAPG Bull., 2000, vol. 84.

  92. Tissot, B.P. and Welte, D.H., Diagenesis, catagenesis and metagenesis of organic matter, in Petroleum Formation and Occurrence, Berlin: Springer, 1978.

    Book  Google Scholar 

  93. Tissot, B.P. and Welte, D.H., Petroleum Formation and Occurrence, New York: Springer, 1984.

    Book  Google Scholar 

  94. Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.S., Prokhorov, V.S., and Titkov, G.A., “Isotope composition of mud volcano gases,” Litol. Polezn. Iskop., 1985, no. 1, pp. 72–87.

  95. Vernadskii, V.I., Biosfera i noosfera (Biosphere and Noosphere), Moscow: Nauka, 2004.

  96. Waples, D.W., “Time and temperature in petroleum generation-application of lopatin’s technique to petroleum exploration,” AAPG Bull., 1980, vol. 64, pp. 916–926.

    Google Scholar 

  97. Ward, C., Evidence of sediment unloading caused by fluid expansion overpressure-generating mechanisms, in Workshop on Rock Stresses in the North Sea (Norwegian Technical Institute, Trondheim, February 1995), Trondheim, Norw. Tech. Inst., 1995, vol. 13–14.

  98. Wasserburg, G.J., Mazor, E., and Zartman, R.E., Isotopic and chemical composition of some terrestrial natural gases, in Earth Science and Meteorites, Geiss, J. and Goldberg, E.D., Eds., Amsterdam: Elsevier, 1963, pp. 219–240.

    Google Scholar 

  99. Whiticar, M.J., “Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane,” Chem. Geol., 1999, vol. 161, pp. 291–314.

    Article  Google Scholar 

  100. Whitman, W.B., Coleman, D.C., and Wiebe, W.J., “Prokaryotes: The unseen majority,” Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 12, pp. 6578–6583. https://doi.org/10.1073/pnas.95.12.6578

    Article  Google Scholar 

  101. Wilhelms, A., Larter, S.R., Head, I., Farrimond, P., di Primio, C., and Zwach, C., “Biodegradation of oil in uplifted basins,” Nature, 2001, vol. 41, no. 6841, pp. 1034–1037.

    Article  Google Scholar 

  102. Worden, R.H. and Burley, S.D., Sandstone diagenesis: The evolution of sand to stone, in Sandstone Diagenesis: Recent and Ancient, New York: Wiley, 2009, pp. 1–44. https://doi.org/10.1002/9781444304459.ch

    Book  Google Scholar 

  103. Wygrala, B.P., Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy, PhD Thesis, Cologne, Germany: Univ. of Cologne, 1989.

  104. Yusufzade, Kh.B., Kasumov, K.A., Aleksandrov, B.L., and Dergunov, E.N., “Studies and prediction of anomalously high stratum pressure from drilling geophysics data,” Azerb. Neft. Khoz., 1976, no. 5, pp. 1–8.

  105. Zartman, R.E., Wasserburg, G.J., and Reynolds, J.H., “Helium, argon and carbon in some natural gases,” J. Geophys. Res., 1961, vol. 66, pp. 277–286.

    Article  Google Scholar 

  106. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., in Geology of the USSR: A Plate Tectonic Synthesis, Page, B.M., Ed., Washington, DC: Amer. Geophys. Union, 1990, vol. 21, pp. 169–198.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Feyzullayev.

Ethics declarations

The author claims that there is no conflict of interest.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyzullayev, A.A. Depth of Diagenetic Processes and Lower Boundary of the Biosphere in the South Caspian Basin. Izv. Atmos. Ocean. Phys. 56, 811–827 (2020). https://doi.org/10.1134/S0001433820080034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820080034

Keywords:

Navigation