Skip to main content
Log in

Protein interaction networks: centrality, modularity, dynamics, and applications

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

In the post-genomic era, proteomics has achieved significant theoretical and practical advances with the development of high-throughput technologies. Especially the rapid accumulation of protein-protein interactions (PPIs) provides a foundation for constructing protein interaction networks (PINs), which can furnish a new perspective for understanding cellular organizations, processes, and functions at network level. In this paper, we present a comprehensive survey on three main characteristics of PINs: centrality, modularity, and dynamics. 1) Different centrality measures, which are used to calculate the importance of proteins, are summarized based on the structural characteristics of PINs or on the basis of its integrated biological information; 2) Different modularity definitions and various clustering algorithms for predicting protein complexes or identifying functional modules are introduced; 3) The dynamics of proteins, PPIs and sub-networks are discussed, respectively. Finally, the main applications of PINs in the complex diseases are reviewed, and the challenges and future research directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar A, Snyder M. Proteomics: protein complexes take the bait. Nature, 2002, 415(6868): 123–124

    Article  Google Scholar 

  2. Von Mering C, Krause R, Snel B, Cornell M, Oliver S G, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417(6887): 399–403

    Article  Google Scholar 

  3. Zeng M, Zhang F, Wu F X, Li Y, Wang J, Li M. Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics, 2020, 36(4): 1114–1120

    Google Scholar 

  4. Chen Y C, Rajagopala S V, Stellberger T, Uetz P. Exhaustive benchmarking of the yeast two-hybrid system. Nature Methods, 2010, 7(9): 667

    Article  Google Scholar 

  5. Morris J H, Knudsen G M, Verschueren E, Johnson J R, Cimermancic P, Greninger A L, Pico A R. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 2014, 9(11): 2539

    Article  Google Scholar 

  6. Hu B, Petela N, Kurze A, Chan K L, Chapard C, Nasmyth K. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Research, 2015, 43(20): e132

    Google Scholar 

  7. Wang R, Liu G, Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinformatics, 2019, 20(1): 471

    Article  Google Scholar 

  8. Zhu Y, Li Y, Liu J, Qin L, Yu J X. Discovering large conserved functional components in global network alignment by graph matching. BMC Genomics, 2018, 19(7): 670

    Article  Google Scholar 

  9. Janwa H, Massey S E, Velev J, Mishra B. On the origin of biomolecular networks. Frontiers in Genetics, 2019, 10: 240

    Article  Google Scholar 

  10. Davis D, Yaveroğlu Ö N, Malod-Dognin N, Stojmirovic A, Pržulj N. Topology-function conservation in protein-protein interaction networks. Bioinformatics, 2015, 31(10): 1632

    Article  Google Scholar 

  11. Li G, Li M, Peng W, Li Y, Pan Y, Wang J. A novel extended Pareto Optimality Consensus model for predicting essential proteins. Journal of Theoretical Biology, 2019, 480: 141–149

    Article  MATH  Google Scholar 

  12. Liu C, Ma Y, Zhao J, Nussinov R, Zhang Y C, Cheng F, Zhang Z K. Computational network biology: data, models, and applications. Physics Reports, 2020, 846: 1–66

    Article  Google Scholar 

  13. Taylor N R. Small world network strategies for studying protein structures and binding. Computational and Structural Biotechnology Journal, 2013, 5(6): e201302006

    Article  Google Scholar 

  14. Leventhal G E, Hill A L, Nowak M A, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nature, 2015, 6: 6101

    Google Scholar 

  15. Barabasi A L, Oltvai Z N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 2004, 5(2): 101–113

    Article  Google Scholar 

  16. Nacher J C, Hayashida M, Akutsu T. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs. BioSystems, 2009, 95(2): 155–159

    Article  Google Scholar 

  17. Alanis-Lobato G, Mier P, Andrade-Navarro M. The latent geometry of the human protein interaction network. Bioinformatics, 2018, 34(16): 2826–2834

    Article  Google Scholar 

  18. Han J D J, Bertin N, Hao T, Goldberg D S, Berriz G F, Zhang L V, Dupuy D, Walhout A J M, Cusick M E, Roth F P, Vidal M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430(6995): 88–93

    Article  Google Scholar 

  19. Komurov K, White M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology, 2007, 3(1): 110

    Article  Google Scholar 

  20. Mitra K, Carvunis A R, Ramesh S K, Ideker T. Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics, 2013, 14(10): 719–732

    Article  Google Scholar 

  21. Li D, Li J, Ouyang S, Wang J, Wu S, Wan P, Zhu Y, Xu X, He F. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness. Proteomics, 2006, 6(2): 456–461

    Article  Google Scholar 

  22. Pereira-Leal J B, Levy E D, Teichmann S A. The origins and evolution of functional modules: lessons from protein complexes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2006, 361(1467): 507–517

    Article  Google Scholar 

  23. Jeong H, Mason S P, Barabási A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41–44

    Article  Google Scholar 

  24. Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics, 2006, 6(1): 35–40

    Article  Google Scholar 

  25. Joy M P, Brock A, Ingber D E, Huang S. High-betweenness proteins in the yeast protein interaction network. BioMed Research International, 2005, 2005(2): 96–103

    Google Scholar 

  26. Estrada E, Rodríguez-Velázquez J A. Subgraph centrality in complex networks. Physical Review E, 2005, 71(5): 056103

    Article  Google Scholar 

  27. Li M, Wang J, Chen X, Wang H, Pan Y. A local average connectivity-based method for identifying essential proteins from the network level. Computational Biology and Chemistry, 2011, 35(3): 143–150

    Article  MATH  Google Scholar 

  28. Wang J, Li M, Wang H, Pan Y. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070–1080

    Article  Google Scholar 

  29. Liu Y, Liang H, Zou Q, He Z. Significance-based essential protein discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: https://doi.org/10.1109/TCBB.2020.3004364

  30. Zeng M, Li M, Fei Z, Wu F X, Li Y, Pan Y, Wang J. A deep learning framework for identifying essential proteins by integrating multiple types of biological information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, DOI: https://doi.org/10.1109/TCBB.2019.2897679

  31. Li G, Li M, Wang J, Wu J, Wu F X, Pan Y. Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics, 2016, 17(8): 279

    Article  Google Scholar 

  32. Helden J V. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 2006, 7(1): 488

    Article  Google Scholar 

  33. Liu W, Ma L, Jeon B, Chen L, Chen B. A network Hierarchy-Based method for functional module detection in protein-protein interaction networks. Journal of Theoretical Biology, 2018, 455: 26–38

    Article  MATH  Google Scholar 

  34. Xiang J, Zhang Y, Li J M, Li H J, Li M. Identifying multi-scale communities in networks by asymptotic surprise. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(3): 033403

    Article  MATH  Google Scholar 

  35. Li M, Wu X, Wang J, Pan Y. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 2012, 13(1): 109

    Article  Google Scholar 

  36. Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13(2): 301–312

    Article  Google Scholar 

  37. Alon U. Biological networks: the tinkerer as an engineer. Science, 2003, 301(5641): 1866–1867

    Article  Google Scholar 

  38. Zhang F, Song H, Zeng M, Li Y, Kurgan L, Li M. DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions. Proteomics, 2019, 19(12): 1900019

    Article  Google Scholar 

  39. Wang Y, You Z, Li L, Chen Z. A survey of current trends in computational predictions of protein-protein interactions. Frontiers of Computer Science, 2020, 14(4): 144901

    Article  Google Scholar 

  40. Nourani E, Khunjush F, Durmuş S. Computational approaches for prediction of pathogen-host protein-protein interactions. Frontiers in Microbiology, 2015, 6: 94

    Article  Google Scholar 

  41. Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Briefings in Bioinformatics, 2020, 21(2): 566–583

    Article  Google Scholar 

  42. Keskin O, Tuncbag N, Gursoy A. Predicting protein-protein interactions from the molecular to the proteome level. Chemical Reviews, 2016, 116(8): 4884–4909

    Article  Google Scholar 

  43. Li T, Wernersson R, Hansen R B, Horn H, Mercer J, Slodkowicz G, Workman C T, Rigina O, Rapacki K, Særfeldt H H, Brunak S, Jensen T S, Lage K. A scored human protein-protein interaction network to catalyze genomic interpretation. Nature Methods, 2017, 14: 61–64

    Article  Google Scholar 

  44. Prasad T S K, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan D S, Sebastian A, Rani S, Ray S, Kishore C J H, Kanth S, Ahmed M, Kashyap M K, Mohmood R, Ramachandra Y L, Krishna V, Rahiman B A, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database—2009 update. Nucleic Acids Research, 2008, 37(suppl 1): D767–D772

    Google Scholar 

  45. Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Research, 2015, 44(D1): D536–D541

    Article  Google Scholar 

  46. Cowley M J, Pinese M, Kassahn K S, Waddell N, Pearson J V, Grimmond S M, Biankin A V, Hautaniemi S, Wu J. PINA v2. 0: mining interactome modules. Nucleic Acids Research, 2011, 40(D1): D862–D865

    Article  Google Scholar 

  47. Das J, Yu H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Systems Biology, 2012, 6(1): 92

    Article  Google Scholar 

  48. Razick S, Magklaras G, Donaldson I M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics, 2008, 9(1): 405

    Article  Google Scholar 

  49. Salwinski L, Miller C S, Smith A J, Pettit F K, Bowie J U, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Research, 2004, 32(suppl 1): D449–D451

    Article  Google Scholar 

  50. Luck K, Kim D K, Lambourne L, Spirohn K, Begg B E, et al. A reference map of the human binary protein interactome. Nature, 2020, 580(7803): 402–408

    Article  Google Scholar 

  51. Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L S. Mering C v. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47(D1): D607–D613

    Article  Google Scholar 

  52. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez R C, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Research, 2012, 40(D1): D841–D846

    Article  Google Scholar 

  53. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes H-W, Ruepp A, Frishman D. The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005, 21(6): 832–834

    Article  Google Scholar 

  54. Oughtred R, Stark C, Breitkreutz B J, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Research, 2019, 47(D1): D529–D541

    Article  Google Scholar 

  55. Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos G A. A guide to conquer the biological network era using graph theory. Frontiers in Bioengineering and Biotechnology, 2020, 8: 34

    Article  Google Scholar 

  56. Li M, Zheng R, Zhang H, Wang J, Pan Y. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 2014, 67(3): 325–333

    Article  Google Scholar 

  57. Li M, Chen J, Wang J, Hu B, Chen G. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008, 9(1): 398

    Article  Google Scholar 

  58. Peng W, Wang J, Zhao B, Wang L. Identification of protein complexes using weighted PageRank-Nibble algorithm and core-attachment structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 179–192

    Article  Google Scholar 

  59. Lv Z, Ao C, Zou Q. Protein function prediction: from traditional classifier to deep learning. Proteomics, 2019, 19(14): 1900119

    Article  Google Scholar 

  60. Zhang F, Song H, Zeng M, Wu F X, Li Y, Pan Y, Li M. A deep learning framework for gene ontology annotations with sequence-and network-based information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: https://doi.org/10.1109/TCBB.2020.2968882

  61. Ganegoda G U, Wang J X, Wu F X, Li M. Prediction of disease genes using tissue-specified gene-gene network. BMC Systems Biology, 2014, 8(3): S3

    Article  Google Scholar 

  62. Wei P J, Wu F X, Xia J, Su Y, Wang J, Zheng C H. Prioritizing cancer genes based on an improved random walk method. Frontiers in Genetics, 2020, 11: 377

    Article  Google Scholar 

  63. Ding Y, Tang J, Guo F. Identification of drug-target interactions via dual laplacian regularized least squares with multiple kernel fusion. Knowledge-Based Systems, 2020, 204: 106254

    Article  Google Scholar 

  64. Zhao T, Hu Y, Valsdottir L R, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Briefings in Bioinformatics, 2020, DOI: https://doi.org/10.1093/bib/bbaa044

  65. Yu L, Zhao J, Gao L. Predicting potential drugs for breast cancer based on miRNA and tissue specificity. International Journal of Biological Sciences, 2018, 14(8): 971

    Article  Google Scholar 

  66. Li X, Xiang J, Wang J, Li J, Wu F X, Li M. FUNMarker: fusion network-based method to identify prognostic and heterogeneous breast cancer biomarkers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: https://doi.org/10.1109/TCBB.2020.2973148

  67. Liu X, Chang X, Leng S, Tang H, Aihara K, Chen L. Detection for disease tipping points by landscape dynamic network biomarkers. National Science Review, 2019, 6(4): 775–785

    Article  Google Scholar 

  68. Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics, 2020, 36(5): 1522–1532

    Article  Google Scholar 

  69. Carneiro D G, Clarke T, Davies C C, Bailey D. Identifying novel protein interactions: proteomic methods, optimisation approaches and data analysis pipelines. Methods, 2015, 95: 46–54

    Article  Google Scholar 

  70. Srihari S, Yong C H, Wong L. Computational Prediction of Protein Complexes from Protein Interaction Networks. Williston: Morgan & Claypool, 2017

    Book  Google Scholar 

  71. Wang J, Peng X, Peng W, Wu F X. Dynamic protein interaction network construction and applications. Proteomics, 2014, 14(4–5): 338–352

    Article  Google Scholar 

  72. Li M, Meng X, Zheng R, Wu F X, Li Y, Pan Y, Wang J. Identification of protein complexes by using a spatial and temporal active protein interaction network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(3): 817–827

    Article  Google Scholar 

  73. Xiao Q, Luo P, Li M, Wang J, Wu F X. A novel core-attachment-based method to identify dynamic protein complexes based on gene expression profiles and PPI networks. Proteomics, 2019, 19(5): 1800129

    Article  Google Scholar 

  74. Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks. Information Sciences, 2020, 522: 275–298

    Article  MATH  Google Scholar 

  75. Tang X, Wang J, Liu B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12(1): 1–15

    Article  Google Scholar 

  76. Tang X, Wang J, Zhong J, Pan Y. Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407–418

    Article  Google Scholar 

  77. Lin C Y, Chin C H, Wu H H, Chen S H, Ko M T. Hubba: hub objects analyzer-a framework of interactome hubs identification for network biology. Nucleic Acids Research, 2008, 36(suppl 2): W438–W443

    Article  Google Scholar 

  78. Li M, Zhang H, Wang J, Pan Y. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology, 2012, 6(1): 15

    Article  Google Scholar 

  79. He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genetics, 2006, 2(6): e88

    Article  Google Scholar 

  80. Zotenko E, Mestre J, O’Leary D P, Przytycka T M. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Computational Biology, 2008, 4(8): e1000140

    Article  Google Scholar 

  81. Kim P M, Lu L J, Xia Y, Gerstein M B. Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 2006, 314(5807): 1938–1941

    Article  Google Scholar 

  82. Taylor I W, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana J L. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 2009, 27(2): 199–204

    Article  Google Scholar 

  83. Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Computational Biology, 2009, 5(12): e1000601

    Article  Google Scholar 

  84. Bonacich P. Power and centrality: a family of measures. American Journal of Sociology, 1987, 92(5): 1170–1182

    Article  Google Scholar 

  85. Pržulj N, Wigle D A, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics, 2004, 20(3): 340–348

    Article  Google Scholar 

  86. Yu H, Kim P M, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 2007, 3(4): e59

    Article  Google Scholar 

  87. Stephenson K, Zelen M. Rethinking centrality: methods and examples. Social Networks, 1989, 11(1): 1–37

    Article  Google Scholar 

  88. Zhang X, Xu J, Xiao W. A new method for the discovery of essential proteins. PLoS ONE, 2013, 8(3): e58763

    Article  Google Scholar 

  89. Xiao Q, Wang J, Peng X, Wu F X, Pan Y. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. BMC Genomics, 2015, 16(Suppl 3): S1

    Article  Google Scholar 

  90. Li M, Li W, Wu F X, Pan Y, Wang J. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Journal of Theoretical Biology, 2018, 447: 65–73

    Article  Google Scholar 

  91. Li M, Ni P, Chen X, Wang J, Wu F X, Pan Y. Construction of refined protein interaction network for predicting essential proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(4): 1386–1397

    Article  Google Scholar 

  92. Acencio M L, Lemke N. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics, 2009, 10(1): 290

    Article  Google Scholar 

  93. Peng X, Wang J, Wang J, Wu F X, Pan Y. Rechecking the centrality-lethality rule in the scope of protein subcellular localization interaction networks. PLoS ONE, 2015, 10(6): e0130743

    Article  Google Scholar 

  94. Peng W, Wang J, Cheng Y, Lu Y, Wu F X, Pan Y. UDoNC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(2): 276–288

    Article  Google Scholar 

  95. Luo J, Qi Y. Identification of essential proteins based on a new combination of local interaction density and protein complexes. PLoS ONE, 2015, 10(6): e0131418

    Article  Google Scholar 

  96. Li M, Niu Z, Chen X, Zhong P, Wu F X, Pan Y. A reliable neighbor-based method for identifying essential proteins by integrating gene expressions, orthology, and subcellular localization information. Tsinghua Science and Technology, 2016, 21(6): 668–677

    Article  Google Scholar 

  97. Zhang W, Xu J, Li Y, Zou X. Detecting essential proteins based on network topology, gene expression data and gene ontology information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(1): 109–116

    Article  Google Scholar 

  98. Lei X, Zhao J, Fujita H, Zhang A. Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets. Knowledge-Based Systems, 2018, 151: 136–148

    Article  Google Scholar 

  99. Zeng M, Li M, Wu F X, Li Y, Pan Y. DeepEP: a deep learning framework for identifying essential proteins. BMC Bioinformatics, 2019, 20(16): 506

    Article  Google Scholar 

  100. Tang Y, Li M, Wang J, Pan Y, Wu F X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127: 67–72

    Article  Google Scholar 

  101. Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics, 2009, 25(21): 2857–2859

    Article  Google Scholar 

  102. Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, 8(S4): S11

    Article  Google Scholar 

  103. Assenov Y, Ramírez F, Schelhorn S E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics, 2008, 24(2): 282–284

    Article  Google Scholar 

  104. Junker B H, Koschützki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics, 2006, 7(1): 219

    Article  Google Scholar 

  105. Gräßler J, Koschützki D, Schreiber F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics, 2012, 28(8): 1178–1179

    Article  Google Scholar 

  106. Zhang J, Li W, Zeng M, Meng X, Kurgan L, Wu F X, Li M. NetEPD: a network-based essential protein discovery platform. Tsinghua Science and Technology, 2020, 25(4): 542–552

    Article  Google Scholar 

  107. Schult D A. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference. 2008, 11–15

  108. Konganti K, Wang G, Yang E, Cai J J. SBEToolbox: a Matlab toolbox for biological network analysis. Evolutionary Bioinformatics Online, 2013, 9: 355

    Google Scholar 

  109. Drozdov I, Ouzounis C A, Shah A M, Tsoka S. Functional genomics assistant (FUGA): a toolbox for the analysis of complex biological networks. BMC Research Notes, 2011, 4(1): 462

    Article  Google Scholar 

  110. Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 2003, 100(21): 12123–12128

    Article  Google Scholar 

  111. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 2004, 101(9): 2658–2663

    Article  Google Scholar 

  112. Luo F, Yang Y, Chen C F, Chang R, Zhou J, Scheuermann R H. Modular organization of protein interaction networks. Bioinformatics, 2007, 23(2): 207–214

    Article  Google Scholar 

  113. Wang J, Li M, Chen J, Pan Y. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 8(3): 607–620

    Article  Google Scholar 

  114. Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141–147

    Article  Google Scholar 

  115. Tarassov K, Messier V, Landry C R, Radinovic S, Serna Molina M M, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick S W. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882): 1465–1470

    Article  Google Scholar 

  116. Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabási A L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586): 1551–1555

    Article  Google Scholar 

  117. Yook S, Oltvai Z, Barabási A. Functional and topological characterization of protein interaction networks. Proteomics, 2004, 4(4): 928–942

    Article  Google Scholar 

  118. Farkas I, Jeong H, Vicsek T, Barabási A L, Oltvai Z N. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A: Statistical Mechanics & Its Applications, 2003, 318(3–4): 601–612

    Article  Google Scholar 

  119. Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 2018, 12(1): 80

    Article  Google Scholar 

  120. Yoon J, Blumer A, Lee K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics, 2006, 22(24): 3106–3108

    Article  Google Scholar 

  121. Lee M J, Choi S, Chung C W. Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Information Sciences, 2016, 326(C): 278–296

    Article  MATH  Google Scholar 

  122. Hao D, Ren C, Li C. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. BMC Systems Biology, 2012, 6(1): 1–10

    Article  Google Scholar 

  123. Li Y, Shang Y, Yang Y. Clustering coefficients of large networks. Information Sciences, 2017, 382: 350–358

    Article  MATH  Google Scholar 

  124. Hartuv E, Shamir R. A clustering algorithm based on graph connectivity. Information Processing Letters, 2000, 76(4–6): 175–181

    Article  MATH  Google Scholar 

  125. Hu H, Yan X, Huang Y, Han J, Zhou X J. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005, 21(suppl 1): i213–i221

    Article  Google Scholar 

  126. Newman M, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69(2): 1–16

    Article  Google Scholar 

  127. Li M, Wang J, Chen J. A fast agglomerate algorithm for mining functional modules in protein interaction networks. In: Proceedings of International Conference on Biomedical Engineering and Informatics. 2008, 3–7

  128. Wang J, Ren J, Li M, Wu F X. Identification of hierarchical and overlapping functional modules in PPI networks. IEEE Transactions on Nanobioscience, 2012, 11(4): 386–393

    Article  Google Scholar 

  129. Lu Y, Hou X, Chen X. A novel travel-time based similarity measure for hierarchical clustering. Neurocomputing, 2016, 173: 3–8

    Article  Google Scholar 

  130. Cho Y R, Hwang W, Ramanathan M, Zhang A. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 2007, 8(1): 265

    Article  Google Scholar 

  131. Bader G D, Hogue C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1): 2

    Article  Google Scholar 

  132. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006, 7(1): 1–13

    Article  Google Scholar 

  133. Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks. Bioinformatics, 2010, 26(8): 1105–1111

    Article  Google Scholar 

  134. Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023

    Article  Google Scholar 

  135. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 2012, 9(5): 471–472

    Article  Google Scholar 

  136. King A D, Pržulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004, 20(17): 3013–3020

    Article  Google Scholar 

  137. Vlasblom J, Wodak S J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics, 2009, 10(1): 99

    Article  Google Scholar 

  138. Cho Y R, Zhang A. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins. BMC Bioinformatics, 2010, 11(3): 1–10

    Google Scholar 

  139. Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084): 631–636

    Article  Google Scholar 

  140. Min W, Li X, Kwoh C K, Ng S K. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics, 2009, 10(1): 169

    Article  Google Scholar 

  141. Ma X, Gao L. Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Information Sciences, 2012, 189(7): 233–254

    Article  Google Scholar 

  142. Zhang A. Protein Interaction Networks: Computational Analysis. England: Cambridge University Press, 2009

    Book  MATH  Google Scholar 

  143. Enright A J, Dongen S V, Ouzounis C A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 2002, 30(7): 1575–1584

    Article  Google Scholar 

  144. Bhowmick S, Seah B S. Clustering and summarizing protein-protein interaction networks: a survey. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 638–658

    Article  Google Scholar 

  145. Satuluri V, Parthasarathy S, Ucar D. Markov clustering of protein interaction networks with improved balance and scalability. In: Proceedings of ACM International Conference on Bioinformatics and Computational Biology. 2010, 247–256

  146. Hwang W, Cho Y R, Zhang A, Ramanathan M. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology, 2006, 1(1): 1–11

    Article  Google Scholar 

  147. Hwang W, Cho Y R, Zhang A, Ramanathan M. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions. BMC Bioinformatics, 2008, 9(1): 64

    Article  Google Scholar 

  148. Feng J, Jiang R, Jiang T. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3): 621–634

    Article  Google Scholar 

  149. Ji J, Zhang A, Liu C, Quan X, Liu Z. Survey: functional module detection from protein-protein interaction networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 261–277

    Article  Google Scholar 

  150. Wang R, Wang C, Sun L, Liu G. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations. BMC Genomics, 2019, 20(1): 637

    Article  Google Scholar 

  151. Xiao Q, Wang J, Peng X, Wu F X. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Science, 2013, 11(Suppl 1): S20

    Article  Google Scholar 

  152. Topchy A, Jain A K, Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866–1881

    Article  Google Scholar 

  153. Asur S. An ensemble framework for clustering protein-protein interaction networks. Bioinformatics, 2007, 23(13): i29–i40

    Article  Google Scholar 

  154. Greene D, Cagney G, Krogan N, Cunningham P. Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics, 2008, 24(15): 1722–1728

    Article  Google Scholar 

  155. Wang R S, Zhang S, Wang Y, Zhang X S, Chen L. Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing, 2008, 72(1–3): 134–141

    Article  Google Scholar 

  156. Ou-Yang XL, Dai D Q, Zhang X F. Protein complex detection via weighted ensemble clustering based on bayesian nonnegative matrix factorization. PLoS ONE, 2013, 8(5): e62158

    Article  Google Scholar 

  157. Wu M, Ou-Yang L, Li X L. Protein complex detection via effective integration of base clustering solutions and co-complex affinity scores. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3): 733–739

    Article  Google Scholar 

  158. Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z. Protein complexes identification based on go attributed network embedding. BMC Bioinformatics, 2018, 19(1): 535

    Article  Google Scholar 

  159. Meng X, Peng X, Wu F X, Li M. Detecting protein complex based on hierarchical compressing network embedding. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. 2019, 215–218

  160. Lei X, Fang M, Guo L, Wu F X. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks. BMC Bioinformatics, 2019, 20(3): 131

    Article  Google Scholar 

  161. Ma X, Sun P G, Gong M. An integrative framework of heterogeneous genomic data for cancer dynamic modules based on matrix decomposition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: https://doi.org/10.1109/TCBB.2020.3004808

  162. Li M, Li D, Tang Y, Wu F X, Wang J. CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International Journal of Molecular Sciences, 2017, 18(9): 1880

    Article  Google Scholar 

  163. Wang J, Zhong J, Chen G, Li M, Wu F X, Pan Y. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(4): 815–822

    Article  Google Scholar 

  164. Natale M, Benso A, Di Carlo S, Ficarra E. FunMod: a cytoscape plugin for identifying functional modules in undirected protein-protein networks. Genomics, Proteomics & Bioinformatics, 2014, 12(4): 178–186

    Article  Google Scholar 

  165. Szalay-Bekő M, Palotai R, Szappanos B, Kovács I A, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 2012, 28(16): 2202–2204

    Article  Google Scholar 

  166. Li M, Tang Y, Wu X, Wang J, Wu F X, Pan Y. C-DEVA: detection, evaluation, visualization and annotation of clusters from biological networks. Biosystems, 2016, 150: 78–86

    Article  Google Scholar 

  167. Kouhsar M, Zare-Mirakabad F, Jamali Y. WCOACH: protein complex prediction in weighted PPI networks. Genes & Genetic Systems, 2015, 90(5): 317–324

    Article  Google Scholar 

  168. Srihari S, Ragan M A. Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 2013, 29(12): 1553–1561

    Article  Google Scholar 

  169. Li D, Pan Z, Hu G, Anderson G, He S. Active module identification from multilayer weighted gene co-expression networks: a continuous optimization approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: https://doi.org/10.1109/TCBB.2020.2970400

  170. De L U, Jensen L J, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science, 2005, 307(5710): 724–727

    Article  Google Scholar 

  171. Kayarkar N A, Durgude S G, Maurya B D, Pawar S V, Chate P B. Protein networks in diseases. International Journal of Drug Discovery, 2009, 1(2): 10–17

    Article  Google Scholar 

  172. Tokuriki N, Tawfik D S. Protein dynamism and evolvability. Science, 2009, 324(5924): 203–207

    Article  Google Scholar 

  173. Hegde S R, Manimaran P, Mande S C. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Computational Biology, 2008, 4(11): e1000237

    Article  Google Scholar 

  174. Tu B P, Mcknight S L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005, 310(5751): 1152–1158

    Article  Google Scholar 

  175. Shen X, Li Y, Jiang X, He T, Hu X, Yang J. Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE, 2016, 11(4): e0153967

    Article  Google Scholar 

  176. Liu W, Xie H. Construction and analysis of dynamic molecular networks. Progress in Biochemistry and Biophysics, 2014, 41(2): 115–125 (in Chinese)

    Google Scholar 

  177. Xia K, Xue H, Dong D, Zhu S, Wang J, Zhang Q, Hou L, Chen H, Tao R, Huang Z, Fu Z, Chen Y G, Han J D J. Identification of the proliferation/differentiation switch in the cellular network of multicellular organisms. PLoS Computational Biology, 2006, 2(11): e145

    Article  Google Scholar 

  178. Przytycka T M, Singh M, Slonim D K. Toward the dynamic interactome: it’s about time. Briefings in Bioinformatics, 2010, 11(1): 15–29

    Article  Google Scholar 

  179. Bossi A, Lehner B. Tissue specificity and the human protein interaction network. Molecular Systems Biology, 2009, 5(1): 260

    Article  Google Scholar 

  180. Lichtenstein I, Charleston M A, Caetano T S, Gamble J R, Vadas M A. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies. BMC Bioinformatics, 2013, 14(1): 59

    Article  Google Scholar 

  181. Bródka P, Saganowski S, Kazienko P. GED: the method for group evolution discovery in social networks. Social Network Analysis and Mining, 2013, 3(1): 1–14

    Article  MATH  Google Scholar 

  182. Du N, Jiang K, Sawle A D, Frank M B, Wallace C A, Zhang A, Jarvis J N. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Medicine, 2015, 7(1): 109

    Article  Google Scholar 

  183. Luo J, Song D, Liang C, Li G. Model the evolution of protein interaction network assisted with protein age. Journal of Theoretical Biology, 2013, 333: 10–17

    Article  MATH  Google Scholar 

  184. Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods, 2016, 110: 90–96

    Article  Google Scholar 

  185. Curtis R E, Yuen A, Song L, Goyal A, Xing E P. TVNViewer: an interactive visualization tool for exploring networks that change over time or space. Bioinformatics, 2011, 27(13): 1880–1881

    Article  Google Scholar 

  186. Tian Y, Zhang B, Hoffman E P, Clarke R, Zhang Z, Shih I M, Xuan J, Herrington D M, Wang Y. KDDN: an open-source cytoscape app for constructing differential dependency networks with significant rewiring. Bioinformatics, 2014, 31(2): 287–289

    Article  Google Scholar 

  187. Goenawan I H, Bryan K, Lynn D J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics, 2016, 32(17): 2713–2715

    Article  Google Scholar 

  188. Li M, Yang J, Wu F X, Pan Y, Wang J. DyNetViewer: a cytoscape app for dynamic network construction, analysis and visualization. Bioinformatics, 2018, 34(9): 1597–1599

    Article  Google Scholar 

  189. Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Briefings in Functional Genomics, 2011, 10(5): 280–293

    Article  Google Scholar 

  190. Xiang J, Zhang N R, Zhang J S, Lv X Y, Li M. PrGeFNE: predicting disease-related genes by fast network embedding. Methods, 2020, DOI:https://doi.org/10.1016/j.ymeth.2020.1006.1015

  191. Hamed M, Spaniol C, Zapp A, Helms V. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma. BMC Genomics, 2015, 16(5): S2

    Article  Google Scholar 

  192. Barabási A L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 2011, 12(1): 56–68

    Article  Google Scholar 

  193. Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han J D. A modular network model of aging. Molecular Systems Biology, 2007, 3(1): 147

    Article  Google Scholar 

  194. Faisal F E, Milenković T. Dynamic networks reveal key players in aging. Bioinformatics, 2014, 30(12): 1721–1729

    Article  Google Scholar 

  195. Sun S Y, Liu Z P, Zeng T, Wang Y, Chen L. Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Scientific Reports, 2013, 3: 2268

    Article  Google Scholar 

  196. Elia J, Glessner J T, Wang K, Takahashi N, Shtir C J, Hadley D, Sleiman P M A, Zhang H, Kim C E, Robison R, Lyon G L, Flory J H, Brad-field J P, Imielinski M, Hou C, Frackelton E C, Chiavacci R M, Sakurai T, Rabin C, Middleton F A, Thomas K A, Garris M, Mentch F, Freitag C M, Steinhausen H C, Todorov A A, Reif A, Rothenberger A, Franke B, Mick E O, Roeyers H, Buitelaar J, Lesch K P, Banaschewski T, Ebstein R P, Mulas F, Oades R D, Sergeant J, Sonuga-Barke E, Renner T J, Romanos M, Romanos J, Warnke A, Walitza S, Meyer J, Pálmason H, Seitz C, Loo S K, Smalley S L, Biederman J, Kent L, Asherson P, Anney R J L, Gaynor J W, Shaw P, Devoto M, White P S, Grant S F A, Buxbaum J D, Rapoport J L, Williams N M, Nelson S F, Faraone S V, Hakonarson H. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 2012, 44(1): 78–84

    Article  Google Scholar 

  197. Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R, Gan L. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophrenia Bulletin, 2014, 40(6):1285–1899

    Article  Google Scholar 

  198. Ma X, Gao L, Karamanlidis G, Gao P, Lee C F, Garcia-Menendez L, Tian R, Tan K. Revealing pathway dynamics in heart diseases by analyzing multiple differential networks. PLoS Computational Biology, 2015, 11(6): e1004332

    Article  Google Scholar 

  199. Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nature Communications, 2018, 9(1): 678

    Article  Google Scholar 

  200. Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports, 2015, 5: 9283

    Article  Google Scholar 

  201. Li M, Gao H, Wang J, Wu F X. Control principles for complex biological networks. Briefings in Bioinformatics, 2019, 20(6): 2253–2266

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants Nos. 61832019, 61622213) and the Fundamental Research Funds for the Central Universities, CSU (2282019SYLB004), Hunan Provincial Science and Technology Program (2019CB1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Additional information

Xiangmao Meng received his BSc and MSc degrees in Jiangxi University of Science and Technology, China in 2012 and 2015, respectively. He is currently a PhD candidate in Computer Science from Central South University, China. His currently research interests include bioinformatics and complex network analysis.

Wenkai Li is a master student in Computer Science from Central South University, China. His currently research interests include bioinformatics, network analysis and essential protein discovery.

Xiaoqing Peng received the PhD degree in Computer Science, Central South University, China in 2016. She is currently a lecturer in Bioinformatics at Central South University, China. Her research interests include genomic data analysis, dynamic protein network construction, and systems biology.

Yaohang Li received the MS and PhD degrees in computer science from Florida State University, USA in 2000 and 2003, respectively. He is an associate professor in the Department of Computer Science at Old Dominion University, USA. His research interests are in computational biology, Monte Carlo methods, and scientific computing.

Min Li received the PhD degree in Computer Science from Central South University, China in 2008. She is the awardee of the NSFC Excellent Young Scholars Program of China in 2016. Currently, she is a professor and vice dean of the School of Computer Science and Engineering, Central South University, China. Her main research interests include bioinformatics and systems biology.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Li, W., Peng, X. et al. Protein interaction networks: centrality, modularity, dynamics, and applications. Front. Comput. Sci. 15, 156902 (2021). https://doi.org/10.1007/s11704-020-8179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-020-8179-0

Keywords

Navigation