Skip to main content
Log in

Identification and Differential Expression of microRNA in Response to Elevated Phospholipase Cγ Expression in Liver RH 35 Carcinoma Cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Our study has primarily shown the positive effect of PLCγ2 on liver tumor cell proliferation, but the molecular basis for its function remains elusive. miRNAs have been widely accepted as important modulators of various cellular activities. This study attempts to characterize the global influence of PLCγ2 on miRNA expressions in liver cancer RH35 cells. Firstly, the recombinant adenovirus AdPLCγ2 was infected into the cells. High-throughput sequencing technology was applied to measure miRNA expressions in PLCγ2-overexpressing cells. Moreover, the target genes and signaling pathways modulated by PLCγ2-specifc miRNAs were identified using target prediction program, GO annotation and KEGG analysis. As a result, totally 246 known and 1075 novel candidate miRNAs were identified, among which 34 known and 191 novel miRNAs exhibited ≥2-fold changes in the AdPLCγ2-infected cells. Correspondingly, 6985 target genes of above 225 differently-expressed miRNAs were predicted, mainly involved in Hippo signaling, Wnt signaling etc., and responsible for tumor development, cell proliferation, apoptosis, migration, lipid metabolism and so on. In aggregate, PLCγ2 induces the significant alterations in miRNA expression, thus providing mechanistic insights into tumorgenesis mediated by PLCγ2, and maybe offers some clues on identifying potential candidates for controlling liver cancer cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Regad, T., Targeting RTK signaling pathways in cancer, Cancers (Basel), 2015, vol. 7, pp. 1758–1784.

    Article  CAS  Google Scholar 

  2. Browaeys-Poly, E., Perdereau, D., Lescuyer, A., Burnol, A.F., and Cailliau, K., Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells, Anticancer Res., 2009, vol. 29, no. 12, pp. 4965–4969.

    CAS  PubMed  Google Scholar 

  3. Zhang, P., Zhao, Y, Zhu, X., Sedwick, D., Zhang, X., and Wang, Z., Cross-talk between phospho-STAT3 and PLCγ1 plays a critical role in colorectal tumorigenesis, Mol. Cancer Res., 2011, vol. 9, no. 10, pp. 1418–1428.

    Article  CAS  Google Scholar 

  4. Khoshyomn, S., Penar, P.L., Rossi, J., Wells, A., Abramson, D.L., and Bhushan, A., Inhibition of phospholipase C-gammal activation blocks glioma cell motility and invasion of fetal rat brain aggregates, Neurosurgery, 1999, vol. 44, no. 3, pp. 568–578.

    Article  CAS  Google Scholar 

  5. Koss, H., Bunney, T.D., Behjati, S., and Katan, M, Dysfunction of phospholipase Cγ in immune disorders and cancer, Trends Biochem Set., 2014, vol. 39, no. 12, pp. 603–611.

    Article  CAS  Google Scholar 

  6. Tensen, CP, PLCG1 gene mutations in cutaneous T-cell lymphomas revisited, J. Invest. Dermatol., 2015, vol. 135, no. 9, pp. 2153–2154.

    Article  CAS  Google Scholar 

  7. Feng, L., Reynisdóttir, I., and Reynisson, J., The effect of PLC-γ2 inhibitors on the growth of human tumour cells, Eur J. Med. Chem., 2012, vol. 54, pp. 463–469.

    Article  CAS  Google Scholar 

  8. Huynh, M.Q., Goẞmann, J., Gattenlöehner, S., Klapper, W., Wacker, H.H., Ramaswamy, A., Bittner, A., Kaiser, U., and Neubauer, A., Expression and pro-survival function of phospholipase Cγ2 in diffuse large B-cell lymphoma, Leuk. Lymphoma, 2015, vol. 56, no. 4, pp. 1088–1095.

    Article  CAS  Google Scholar 

  9. Liu, T.M., Woyach, J.A., Zhong, Y., Lozanski, A., Lozanski, G, Dong, S., Strattan, E., Lehman, A., Zhang, X., Jones, J.A., Flynn, J., Andritsos, L.A., Maddocks, K., Jaglowski, S.M., Blum, K.A., Byrd, J.C., Dubovsky, J.A., and Johnson, A.J., Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation, Blood, 2015, vol. 126, no. 1, pp. 61–68.

    Article  CAS  Google Scholar 

  10. Ghouri, Y.A., Mian, I., and Rowe, J.H., Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis, J. Carcinog., 2017, vol. 16, p. 1.

    Article  CAS  Google Scholar 

  11. Gramantieri, L., Fornari, F, Callegari, E., Sabbioni, S., Lanza, G, Croce, C.M., Bolondi, L., and Negrini, M., MicroRNA involvement in hepatocellular carcinoma, J. Cell Mol. Med., 2008, vol. 12, no. 6A, pp. 2189–204.

    Article  CAS  Google Scholar 

  12. Aravalli, R.N., Cressman, E.N., and Steer, C.J., Cellular and molecular mechanisms of hepatocellular carcinoma: an update, Arch. Toxicol., 2013, vol. 87, no. 2, pp. 227–247.

    Article  CAS  Google Scholar 

  13. Lee, J.S., Chu, I.S., Heo, J., Calvisi, D.F, Sun, Z., Roskams, T., Durnez, A., Demetris, A.J., and Thorgeirsson, S.S., Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling, Hepatology, 2004, vol. 40, no. 3, pp. 667–676.

    Article  CAS  Google Scholar 

  14. Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., Ambs, S., Chen, Y., Meltzer, P.S., Cгoce, C.M., Qin, L.X., Man, K., Lo, CM., Lee, J., Ng, I.O., Fan, J., Tang, Z.Y., Sun, H.C., and Wang, X.W., MicroRNA expression, survival, and response to interferon in liver cancer, N. Engl. J. Med., 2009, vol. 361, no. 15, pp. 1437–1447.

    Article  CAS  Google Scholar 

  15. Ranganathan, K., Sivasankar, V., microRNAs-Biology and clinical applications, J. Oral. Maxillofac. Pathol., 2014, vol. 18, no. 2, pp. 229–234.

    Article  Google Scholar 

  16. Esquela-Kerscher, A., Slack, F.J., Oncomirs-microRNAs with a role in cancer, Nat. Rev. Cancer, 2006, vol. 6, no. 4, pp. 259–269.

    Article  CAS  Google Scholar 

  17. Callegari, E., Gramantieri, L., Domenicali, M., Dabundo, L., Sabbioni, S., and Negrini, M., MicroRNAs in liver cancer: a model for investigating pathogenesis and novel therapeutic approaches, Cell Death. Differ., 2015, vol. 22, no. 1, pp. 46–57.

    Article  CAS  Google Scholar 

  18. Shah, M., Calin, G.A., MicroRNAs as therapeutic targets in human cancers, Wiley Interdiscip. Rev. RNA, 2014, vol. 5, no. 4, pp. 537–548.

    Article  CAS  Google Scholar 

  19. Gautam, A., Kumar, R., Dimitrov, G, Hoke, A., Hammamieh, R., and Jett, M., Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods, Mol. Biol. Rep., 2016, vol. 43, no. 10, pp. 1165–1178.

    Article  CAS  Google Scholar 

  20. Gyvyte, U., Juzenas, S., Salteniene, V., Kupcinskas, J., Poskiene, L., Kucinskas, L., Jarmalaite, S., Stuopelyte, K., Steponaitiene, R., Hemmrich-Stanisak, G., Hübenthal, M., Link, A., Franke, S., Franke, A., Pangonyte, D., Lesauskaite, V., Kupcinskas, L., and Skieceviciene, J., MiRNA profiling of gastrointestinal stromal tumors by next-generation sequencing, Oncotarget, 2017, vol. 8, no. 23, pp. 37225–37238.

    Article  Google Scholar 

  21. Chen, X., Lv, Q., Liu, Y., and Deng, W., Construction of recombinant adenovirus Ad-rat PLCγ2 and its effects on apoptosis of rat liver cell BRL-3A in vitro, Cell Mol. Biol. (Noisy-le-grand), 2016, vol. 62, no. 11, pp. 45–50.

    Article  CAS  Google Scholar 

  22. Chen, X., Lv, Q., Ma, J., and Liu,Y., PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK МАРК and PKCD/p38 МАРК signaling, Cell Prolif., 2018, vol. 51, no. 3, p. eІ2437.

  23. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J., 2011, vol. 17, pp. 10–12.

    Article  Google Scholar 

  24. Friedländer, M.R., Chen, W., Adamidi, C, Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N., Discovering microRNAs from deep sequencing data using miRDeep, Nat. Biotechnol., 2008, vol. 26, no. 4, pp. 407–415.

  25. Anders, S., Huber, W., Differential expression analysis for sequence count data, Genome Biol., 2010, vol. 11, no. 10, p. R106.

    Article  CAS  Google Scholar 

  26. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S., Human microRNA targets, PLoS Biol., 2005, vol. 3, no. 7, p. e264.

    Article  Google Scholar 

  27. Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., and Shi, C., WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W71–W75.

    Article  CAS  Google Scholar 

  28. Zhou, K., Liu, M., and Cao, Y., New Insight into microRNA functions in cancer: oncogene-microRNA–tumor suppressor gene network, Front. Mol. Biosci., 2017, vol. 4, p. 46.

    Article  Google Scholar 

  29. Tang, W., Wan, S., Yang, Z., Teschendorff, A.E., and Zou, Q., Tumor origin detection with tissue-specific miRNA and DNA methylation markers, Bioinformatics, 2018, vol. 34, no. 3, pp. 398–406.

    Article  CAS  Google Scholar 

  30. Li, D.B., Liu, J.L., Wang, W., Luo, X.M., Zhou, X., Li, J.P., Cao, X.L., Long, X.H., Chen, J.G., and Qin, C., Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats, Front. Aging. Neurosci., 2018, vol. 10, p. 24.

    Article  Google Scholar 

  31. Nour, M., Scalzo, F., and Liebeskind, D.S., Ischemia–reperfusion injury in stroke, Interv. Neurol., 2013, vol. 1, no. 3–4, pp. 85–199.

    Google Scholar 

  32. Takuma, A., Abe, A., Saito, Y., Nito, C., Ueda, M., Ishimaru, Y., Harada, H., Abe, K., Kimura, K., and Asakura, T., Gene expression analysis of the effect of ischemic infarction in whole blood, Int. J. Mol. Sci., 2017, vol. 18, no. 11, p.E2335.

    Article  Google Scholar 

  33. Chen, F., Wang, R.J., Li, G.Z., Zhang, Y., Yu, S., Liu, Y.F., Chen, X.Y., and Hou, S.K., miRNA array analysis of plasma miRNA alterations in rats exposed to a high altitude hypoxic environment, Mol. Med. Rep., 2018, vol. 18, no. 6, pp. 5502–5510.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tong, Y.J., miRNA expression analysis of effect of aerobic exercise on apoptosis of spermatogenic cells in high-fat diet rats, Yangzhou Univ., 2017.

  35. Oliveto, S., Mancino, M., Manfrini, N., and Biffo, S., Role of microRNAs in translation regulation and cancer, World J. Biol. Chem., 2017, vol. 8, no. 1, pp. 45–56.

    Article  Google Scholar 

  36. Chen, C., Wells, A.D., Comparative analysis of E2F family member oncogenic activity, PLoS One, 2007, vol. 2, p. e912.

    Article  Google Scholar 

  37. Opavsky, R., Tsai, S.Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., Kaufmann, M., Walton, N.A., Stephens, J.A., Fernandez, S.A., Muthusamy, N., Felsher, D.W., Porcu, P., Caligiuri, M.A., and Leone, G., Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 39, pp. 15400–15405.

    Article  CAS  Google Scholar 

  38. Warren, J.S.A., Xiao, Y., and Lamar, J.M., YAP/TAZ activation as a target for treating metastatic cancer, Cancers (Basel), 2018, vol. 10, no. 4, p. E115.

    Article  Google Scholar 

  39. Khalaf, A.M., Fuentes, D., Morshid, A.I., Burke, M.R., Kaseb, A.O., Hassan, M., Hazle, J.D., and Elsayes, K.M., Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance, J. Hepatocell. Carcinoma, 2018, vol. 5, pp. 61–73.

    Article  CAS  Google Scholar 

  40. Scharenberg, A.M., Humphries, L.A., and Rawlings, D.J., Calcium signalling and cell-fate choice in B cells, Nat. Rev. Immunol., 2007, vol. 7, no. 10, pp. 778–789.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (no. 31401209), Ministry of Science and Technology of the People’s Republic of China (MOST) and Student Research Training Program (SRTP) of Henan University of Science and Technology (no. 2018368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Chen.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhu, X., Wei, Z. et al. Identification and Differential Expression of microRNA in Response to Elevated Phospholipase Cγ Expression in Liver RH 35 Carcinoma Cells. Cytol. Genet. 54, 555–565 (2020). https://doi.org/10.3103/S009545272006002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272006002X

Keywords:

Navigation