Skip to main content

Advertisement

Log in

Enantioselective Separation of Antiretroviral Drug Combinations on Immobilized Polysaccharide CSPs Under Subcritical Conditions Using Supercritical Fluid Chromatography Apparatus

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A stereoselective method has been developed for the chiral separation of the enantiomers of eight antiretroviral (ARV) drugs under subcritical conditions using a supercritical fluid chromatography apparatus. The ARVs: abacavir, tenofovir alafenamide, lamivudine, efavirenz, atazanavir, emtricitabine, dolutegravir and darunavir, are used to treat the human immunodeficiency virus (HIV). The antiretroviral therapy has been planned to manage and control the severity of HIV and prolong the patient’s life. The use of multiple drugs that act on different viral targets is known as highly active antiretroviral therapy, which slows down the development of AIDS and prevents opportunistic infections that often lead to death. The immobilized meta-substituted polysaccharide-derived carbamate columns (CSPs) have been chosen for chiral SFC separation of selected ARVs. The ARVs enantioseparation was achieved on CSPs by using different alcohol co-solvents (methanol, ethanol and isopropyl alcohol) with diethylamine (DEA) as an additive to the mobile phase. These CSPs exhibit an exceptional level of complementary chiral recognition characteristics by applying different screening and method optimization strategies. The cellulose tris(3,5-dichlorophenylcarbamate) immobilized on silica gel was found to be useful for the chiral SFC analysis of abacavir, lamivudine, efavirenz combination ARV analysis, and the method was optimized by studying the effects of different mobile phase additives, column temperatures and flow rates. The amylose tris(3-chloro, 5-methylphenyl carbamate) immobilized on silica gel was found to be useful for the chiral SFC analysis of emtricitabine, abacavir and dolutegravir combination ARV drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown C (1990) Chirality in drug design and synthesis. Academic Press, London

    Google Scholar 

  2. Federsel HJ (2007) Chiral drug discovery and development from concept stage to market launch. In: Triggle DJ, Taylor JB (eds) Comprehensive medicinal chemistry II, vol 2. Elsevier, Amsterdam

    Google Scholar 

  3. Soudijn W (1983) Advantages and disadvantages in the application of biological racemates of specific isomers in drugs. In: Stereochemistry and biological activity of drugs. Blackwell Scientific Publications: Oxford

  4. Borman S (1992) FDA issues flexible policy on chiral drugs. Chem Eng News 70:5

    Google Scholar 

  5. Yamaguchi T, Iwanami N, Shudo K, Saneyoshi M (1994) Chiral discrimination of enantiomeric 2′-deoxythymidine 5′-triphosphate by HIV-1 reverse transcriptase and eukaryotic DNA polymerases. Biochem Biophys Commun 200:1023–1027

    Article  CAS  Google Scholar 

  6. Focher F, Maga G, Bendiscioli A, Capobianco M, Colonna F, Garbesi A, Spadari S (1995) Stereospecificity of human DNA polymerases alpha, beta, gamma, delta and epsilon, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and Escherichia coli DNA polymerase I in recognizing d- and l-thymidine 5′-triphosphate as substrate. Nucleic Acid Res 23:2480–2847

    Article  Google Scholar 

  7. Pujeri S, Khader A, Seetharamappa J (2013) Chiral separation of non-nucleoside reverse transcription inhibitor efavirenz by HPLC on cellulose-based chiral stationary phase. J Food Drug Anal 21:1

    Article  Google Scholar 

  8. Wu Y, Yang J, Duan C, Chu L, Chen S, Qiao S, Li X, Deng H (2018) Simultaneous determination of antiretroviral drugs in human hair with liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B 1083:209–221

    Article  CAS  Google Scholar 

  9. Abacavir. https://pubchem.ncbi.nlm.nih.gov/compound/441300

  10. Tenofovir alafenamide. https://pubchem.ncbi.nlm.nih.gov/compound/9574768

  11. Lamivudine. https://pubchem.ncbi.nlm.nih.gov/compound/60825

  12. Emtricitabine. https://pubchem.ncbi.nlm.nih.gov/compound/60877

  13. Efavirenz. https://pubchem.ncbi.nlm.nih.gov/compound/64139

  14. Atazanavir. https://pubchem.ncbi.nlm.nih.gov/compound/148192

  15. Dolutegravir. https://pubchem.ncbi.nlm.nih.gov/compound/54726191

  16. Darunavir. https://pubchem.ncbi.nlm.nih.gov/compound/213039

  17. Cardoso PA, César IC (2018) Chiral method development strategies for HPLC using macrocyclic glycopeptide-based stationary phases. Chromatographia 81(6):841–850

    Article  CAS  Google Scholar 

  18. Phinney KW (2000) Separating drug enantiomers is ushering in a renaissance of sub- and supercritical fluid chromatography. Anal Chem 72(5):204–211

    Article  Google Scholar 

  19. Alexander AJ, Zhang L, Hooker TF, Tomasella FP (2013) Comparison of supercritical fluid chromatography and reverse phase liquid chromatography for the impurity profiling of the antiretroviral drugs lamivudine/BMS-986001/efavirenz in a combination tablet. J Pharmaceut Biomed Anal 78–79:243–251

    Article  Google Scholar 

  20. Robert K, Hofstetter HM, Fassauer GM, Bock C, Surur AS, Behnisch S, Grathwol CW, Potlitz F, Oergel T, Siegmund W, Link A (2019) Simultaneous quantification of acidic and basic flupirtine metabolites by supercritical fluid chromatography according to European Medicines Agency validation. J Chromatogr A 1603:338–347

    Article  Google Scholar 

  21. Yan TQ, Orihuela C (2007) Rapid and high throughput separation technologies—steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates. J Chromatogr A 1156(1–2):220–227

    Article  CAS  Google Scholar 

  22. Zeng L, Xu R, Zhang Y, Kassel DB (2011) Two-dimensional supercritical fluid chromatography/mass spectrometry for the enantiomeric analysis and purification of pharmaceutical samples. J Chromatogr A 1218(20):3080–3088

    Article  CAS  Google Scholar 

  23. Bernal JL, Toribio L, del Nozal MJ, Nieto EM, Montequi MI (2002) Separation of antifungal chiral drugs by SFC and HPLC: a comparative study. J Biochem Biophys Methods 54(1–3):245–254

    Article  CAS  Google Scholar 

  24. Seshachalam U, Rao DVLN, Haribabu B, Chandrasekhar KB (2006) Chiral LC for separation of the enantiomers of abacavir sulfate. Chromatographia 64(11):745–748

    Article  CAS  Google Scholar 

  25. Pujeri SS, Khader AMA, Seetharamappa J (2013) Chiral separation of non-nucleoside reverse transcription inhibitor efavirenz by HPLC on cellulose-based chiral stationary phase. J Food Drug Anal 21(1):93–100

    CAS  Google Scholar 

  26. Rao RN, Kumar KN, Naidu CG (2012) Liquid chromatographic separation of darunavir enantiomers on coated and immobilized amylose tris (3, 5-dimethylphenylcarbamate) chiral stationary phases. Chirality 24(8):652–660

    Article  CAS  Google Scholar 

  27. Poole CF (2012) Supercritical fluid extraction and chromatography. J Chromatogr A 1250:1

    Article  CAS  Google Scholar 

  28. Ali I, Kumerer K, Aboul-Enein HY (2006) Mechanistic principles in chiral separations using liquid chromatography and capillary electrophoresis. Chromatographia 63:295–307

    Article  CAS  Google Scholar 

  29. Ali I, Alam SD, Al-Othman ZA, Farooqui JA (2015) Recent advances in SPE-Chiral-HPLC methods for enantiomeric separation of chiral drugs in biological samples. J Chromatogr Sci 51:645–654

    Article  Google Scholar 

  30. Blackwell JA, Stringham RW, Weckwerth JD (1997) Effect of mobile phase additives in packed-column subcritical and supercritical fluid chromatography. Anal Chem 69:409–415

    Article  CAS  Google Scholar 

  31. Sekhon BS (2010) Separation of pharmaceutical enantiomers using supercritical fluid technology. Int J Pharmtech Res 2(2):1595–1602

    CAS  Google Scholar 

  32. Franco P, Zhang T (2008) Common approaches for efficient method development with immobilised polysaccharide-derived chiral stationary phases. J Chromatogr B 875(1):48–56

    Article  CAS  Google Scholar 

  33. Blackwell JA (1998) Manipulation of chiral resolution for isooxazoline based IIb/IIIa receptor antagonists using various mobile phase additives in subcritical fluid chromatography. Chirality 10:338–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirupathi Choppari.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choppari, T., Gunnam, S., Chennuru, L.N. et al. Enantioselective Separation of Antiretroviral Drug Combinations on Immobilized Polysaccharide CSPs Under Subcritical Conditions Using Supercritical Fluid Chromatography Apparatus. Chromatographia 84, 297–306 (2021). https://doi.org/10.1007/s10337-021-04004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04004-3

Keywords

Navigation