Skip to main content
Log in

Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing, recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages. Here, we study the structure and properties of a new type of thermoplastic polyurethanes (TPUs) with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond and π-π interaction in hard segments. As detected by rheometry, the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs. In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology in π-π interaction based aromatic TPUs. Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to stronger π-π stacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics. The enhanced π-π packing and micro-phase structure in TPUs further kinetically immobilize the dynamic bond. This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU. This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, B.; Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 2009, 323, 1458–1460.

    Article  CAS  PubMed  Google Scholar 

  2. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Sel-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

    Article  CAS  PubMed  Google Scholar 

  3. Li, Y.; Sun, J. Self-healing and healable polymeric materials based on polymer complexes. Acta Polymerica Sinica (in Chinese) 2020, 51, 791–803.

    CAS  Google Scholar 

  4. Lendlein, A.; Jiang, H.; Junger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 128, 11421–11425.

    Article  CAS  Google Scholar 

  6. Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 2019, 11, 442–448.

    Article  CAS  PubMed  Google Scholar 

  7. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138, 2118–2121.

    Article  CAS  PubMed  Google Scholar 

  9. Kuang, X.; Liu, G.; Dong, X.; Wang, D. Correlation between stress relaxation dynamics and thermochemistry for covalent adaptive networks polymers. Mater. Chem. Front. 2017, 1, 111–118.

    Article  CAS  Google Scholar 

  10. Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 2008, 41, 9112–9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  12. Kuang, X.; Liu, G.; Dong, X.; Wang, D. Triple-shape memory epoxy based on Diels-Alder adduct molecular switch. Polymer 2016, 84, 1–9.

    Article  CAS  Google Scholar 

  13. Kuang, X.; Liu, G.; Zheng, L.; Li, C.; Wang, D. Functional polyester with widely tunable mechanical properties: the role of reversible cross-linking and crystallization. Polymer 2015, 65, 202–209.

    Article  CAS  Google Scholar 

  14. Oehlenschlaeger, K. K.; Mueller, J. O.; Brandt, J.; Hilf, S.; Lederer, A.; Wilhelm, M.; Graf, R.; Coote, M. L.; Schmidt, F. G.; Barner-Kowollik, C. Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv. Mater. 2014, 26, 3561–3566.

    Article  CAS  PubMed  Google Scholar 

  15. Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2013, 2, 694–699.

    Article  CAS  Google Scholar 

  16. Barcan, G. A.; Zhang, X.; Waymouth, R. M. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 2015, 137, 5650–5653.

    Article  CAS  PubMed  Google Scholar 

  17. Deng, J.; Kuang, X.; Liu, R.; Ding, W.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y.; Wang, L.; Qi, H. J.; Zhang, T.; Wang, Z. L. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 2018, 30, 1705918.

    Article  CAS  Google Scholar 

  18. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  CAS  PubMed  Google Scholar 

  19. Lei, X.; Jin, Y.; Sun, H.; Zhang, W. Rehealable imide-imine hybrid polymers with full recyclability. J. Mater. Chem. A 2017, 5, 21140–21145.

    Article  CAS  Google Scholar 

  20. Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules 2018, 51, 9816–9824.

    Article  CAS  Google Scholar 

  21. Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 2018, 4, eaaq0508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lessard, J. J.; Garcia, L. F.; Easterling, C. P.; Sims, M. B.; Bentz, K. C.; Arencibia, S.; Savin, D. A.; Sumerlin, B. S. Catalyst-free vitrimers from vinyl polymers. Macromolecules 2019, 52, 2105–2111.

    Article  CAS  Google Scholar 

  23. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792.

    Article  CAS  Google Scholar 

  24. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667.

    Article  CAS  PubMed  Google Scholar 

  25. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, K.; Shi, Q.; Dunn, M. L.; Wang, T. J.; Qi, H. J. Carbon fiber reinforced thermoset composite with near 100% recyclability. Adv. Funct. Mater. 2016, 26, 6098–6106.

    Article  CAS  Google Scholar 

  27. Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 2014, 26, 2038–2046.

    Article  CAS  Google Scholar 

  28. Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 2012, 51, 10561–10565.

    Article  CAS  Google Scholar 

  29. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, C.; Liu, N.; Allen, R.; Tok, J. B. H.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 2013, 25, 5785–5790.

    Article  CAS  PubMed  Google Scholar 

  31. Tang, X.; Feula, A.; Baker, C. B.; Melia, K.; Merino, H. D.; Hamley, W. I.; Buckley, P. C.; Hayes, W.; Siviour, R. C. A dynamic supramolecular polyurethane network whose mechanical properties are kinetically controlled. Polymer 2017, 133, 143–150.

    Article  CAS  Google Scholar 

  32. Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128–16131.

    Article  CAS  PubMed  Google Scholar 

  33. Berezkin, Y.; Urick, M. In Modern polyurethanes: overview of structure property relationship. ACS Symp. Ser, ACS Publications, 2013, p. 65–81.

  34. Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441.

    Article  CAS  Google Scholar 

  35. Xiang, D.; He, J.; Cui, T.; Liu, L.; Shi, Q. S.; Ma, L. C.; Liang, Y. Multiphase structure and electromechanical behaviors of aliphatic polyurethane elastomers. Macromolecules 2018, 51, 6369–6379.

    Article  CAS  Google Scholar 

  36. Velankar, S.; Cooper, S. L. Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 2000, 33, 382–394.

    Article  CAS  Google Scholar 

  37. Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. Bio-inspired highperformance and recyclable cross-linked polymers. Adv. Mater. 2013, 25, 4912–4917.

    Article  CAS  PubMed  Google Scholar 

  38. Heo, Y.; Sodano, H. A. Self-healing polyurethanes with shape recovery. Adv. Funct. Mater. 2014, 24, 5261–5268.

    Article  CAS  Google Scholar 

  39. Liu, W. X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z. X.; Xu, J. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 2017, 139, 8678–8684.

    Article  CAS  PubMed  Google Scholar 

  40. Ying, H.; Cheng, J. Hydrolyzable polyureas bearing hindered urea bonds. J. Am. Chem. Soc. 2014, 136, 16974–16977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang, J.; Son, D.; Wang, G.-J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.

    Article  CAS  Google Scholar 

  42. Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B. H.; Jia, X.; Bao, Z. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, 30, 1801435.

    Article  CAS  Google Scholar 

  43. Jin, B.; Song, H.; Jiang, R.; Song, J.; Zhao, Q.; Xie, T. Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 2018, 4, eaao3865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2, e1501297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xu, W. M.; Rong, M. Z.; Zhang, M. Q. Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J. Mater. Chem. A 2016, 4, 10683–10690.

    Article  CAS  Google Scholar 

  46. Rekondo, A.; Martin, R.; de, Luzuriaga A. R.; Cabanero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

    Article  CAS  Google Scholar 

  47. Xu, Y.; Chen, D. A novel self-healing polyurethane based on disulfide bonds. Macromol. Chem. Phys. 2016, 217, 1191–1196.

    Article  CAS  Google Scholar 

  48. Zhang, L.; Chen, L.; Rowan, S. J. Trapping dynamic disulfide bonds in the hard segments of thermoplastic polyurethane elastomers. Macromol. Chem. Phys. 2017, 218, 1600320.

    Article  CAS  Google Scholar 

  49. Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

    Article  CAS  Google Scholar 

  50. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.

    Article  CAS  Google Scholar 

  51. Carlsson, D. J.; Wiles, D. M. The photodegradation of polypropylene films. II. Photolysis of ketonic oxidation products. Macromolecules 1969, 2, 587–597.

    Article  CAS  Google Scholar 

  52. Tobin, M. C. The infrared spectra of polymers. III. The infrared and Raman spectra of isotactic polypropylene. J. Phys. Chem. 1960, 64, 216–219.

    Article  CAS  Google Scholar 

  53. Jorgensen, W. L.; Maxwell, D. S.; Tirada-Rives, J. J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Chem. Soc. 1996, 118, 11225–11236.

    Article  CAS  Google Scholar 

  54. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, P. GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Commun. 1995, 91, 43–56.

    Article  CAS  Google Scholar 

  55. Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol. Model. 2001, 7, 306–317.

    Article  CAS  Google Scholar 

  56. Kuang, X.; Chen, K.; Dunn, C. K.; Wu, J.; Li, V. C.; Qi, H. J. 3D printing of highly stretchable, shape-memory and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 2018, 101, 7381–7388.

    Article  CAS  Google Scholar 

  57. Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014, 114, 2587–2693.

    Article  CAS  PubMed  Google Scholar 

  58. Hunter, C. A.; Sanders, J. K. The nature of n-n interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Kuang, X., Yang, WH. et al. Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane. Chin J Polym Sci 39, 154–163 (2021). https://doi.org/10.1007/s10118-020-2494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2494-7

Keywords

Navigation