Skip to main content
Log in

Peroxidase Mimicking Activity of Palladium Nanocluster Altered by Heparin

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

NADH, composed of metal binding, charged and redox groups, acts as a “three-in-one” template to construct peroxidase mimicking Pd nanoclusters (NCs). The physicochemical properties of Pd NCs are highly dependent upon the molar ratio of [NADH]/[Na2PdCl4], thereby contributing to distinct peroxidase mimicking activities. The ultrasmall Pd nanozyme that contains 30% metallic Pd0 species, exhibits the Km of 0.063 mM toward TMB and 80.8 mM toward H2O2. Notably, addition of heparin enables the enhancement of its peroxidase-like activity in neutral media. A colorimetric assay was well-established at pH 6 for quantitatively monitoring heparin in aqueous solution and biological fluid. The linear response lies in the range of 0.5–25 µg mL−1, with the limit of detection of 1.1 ng mL−1. This work paves a promising pathway to manufacture highly active enzyme mimetics with desirable physicochemical properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karami Z, Jeibar A, Sohrabi N, Badoei-dalfard A, Sargazi G (2020) A Porous Tantalum-Based Metal-Organic Framework (Tα-MOF) as a Novel and Highly Efficient Peroxidase Mimic for Colorimetric Evaluation of the Antioxidant Capacity. Catal Letters 150(8):2167–2179

    Article  CAS  Google Scholar 

  2. Gao P, Feng Y, Wang M, Jiang N, Qi W, Su R, He Z (2020) Ferrocene-Modified Metal-Organic Frameworks as a Peroxidase-Mimicking Catalyst. Catal Letters. https://doi.org/10.1007/s10562-020-03314-9

    Article  Google Scholar 

  3. Jiao M, Li Z, Li X, Zhang Z, Yuan Q, Vriesekoop F, Liang H, Liu J (2020) Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase. Chem Eng J 388:124249

    Article  CAS  Google Scholar 

  4. Vallabani NVS, Vinu A, Singh S, Karakoti A (2020) Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci 567:154–164

    Article  CAS  PubMed  Google Scholar 

  5. Xu Z, Lyu X, Yang B, Cao W, Li R, Zhang X, Zhang X, Fan G, Kong X, Liu Q (2019) Meso-tetrakis(4-chlorophenyl)porphyrin functionalized CuFe2O4/SiO2 nanocomposites with enhanced peroxidase-like activity conveniently using for visual biosensing at room temperature. Colloids Surf A 569:28–34

    Article  CAS  Google Scholar 

  6. He Y, Li N, Lian J, Yang Z, Liu Z, Liu Q, Zhang X, Zhang X (2020) Colorimetric ascorbic acid sensing from a synergetic catalytic strategy based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin functionalized CuS nanohexahedrons with the enhanced peroxidase-like activity. Colloids Surf A 598:124855

    Article  CAS  Google Scholar 

  7. Liu X, Wang X, Qi C, Han Q, Xiao W, Cai S, Wang C, Yang R (2019) Sensitive colorimetric detection of ascorbic acid using Pt/CeO2 nanocomposites as peroxidase mimics. Appl Surf Sci 479:532–539

    Article  CAS  Google Scholar 

  8. Huang Y, Ren J, Qu X (2019) Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 119(6):4357–4412

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Zheng Y, Chen Z, Qin Y, Guo R (2019) High-Performance Integrated Enzyme Cascade Bioplatform Based on Protein–BiPt Nanochain@Graphene Oxide Hybrid Guided One-Pot Self-Assembly Strategy. Small 15(12):1804987

    Article  CAS  Google Scholar 

  10. Zhang R, Fan K, Yan X (2020) Nanozymes: created by learning from nature. Sci China Life Sci 63(8):1183–1200

    Article  PubMed  Google Scholar 

  11. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  PubMed  Google Scholar 

  13. Mohamad A, Rizwan M, Keasberry NA, Nguyen AS, Lam TD, Ahmed MU (2020) Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens Bioelectron 155:112108

    Article  CAS  PubMed  Google Scholar 

  14. Chen C, Liu W, Ni P, Jiang Y, Zhang C, Wang B, Li J, Cao B, Lu Y, Chen W (2019) Engineering Two-Dimensional Pd Nanoplates with Exposed Highly Active 100 Facets Toward Colorimetric Acid Phosphatase Detection. ACS Appl Mater Inter 11(50):47564–47570

    Article  CAS  Google Scholar 

  15. Wang J, Ni P, Chen C, Jiang Y, Zhang C, Wang B, Cao B, Lu Y (2020) Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Microchim Acta 187(2):115

    Article  CAS  Google Scholar 

  16. Adeniyi O, Sicwetsha S, Mashazi P (2019) Nanomagnet-Silica Nanoparticles Decorated with Au@Pd for Enhanced Peroxidase-Like Activity and Colorimetric Glucose Sensing. ACS Appl Mater Inter 12(2):1973–1987

    Article  CAS  Google Scholar 

  17. Li L, Liu H, Bian J, Zhang X, Fu Y, Li Z, Wei S, Xu Z, Liu X, Liu Z, Wang D, Gao D (2020) Ag/Pd bimetal nanozyme with enhanced catalytic and photothermal effects for ROS/hyperthermia/chemotherapy triple-modality antitumor therapy. Chem Eng J 397:125438

    Article  CAS  Google Scholar 

  18. Cai S, Fu Z, Xiao W, Xiong Y, Wang C, Yang R (2020) Zero-Dimensional/Two-Dimensional AuxPd100–x Nanocomposites with Enhanced Nanozyme Catalysis for Sensitive Glucose Detection. ACS Appl Mater Inter 12(10):11616–11624

    Article  CAS  Google Scholar 

  19. Huang Q, Zhang J, Li W, Fu Y (2020) A heparin-modified palladium nanozyme for photometric determination of protamine. Microchim Acta 187(4):226

    Article  CAS  Google Scholar 

  20. Li W, Zhi X, Yang J, Zhang J, Fu Y (2016) Colorimetric detection of cysteine and homocysteine based on an oligonucleotide-stabilized Pd nanozyme. Anal Methods 8(25):5111–5116

    Article  CAS  Google Scholar 

  21. Fu Y, Zhang H, Dai S, Zhi X, Zhang J, Li W (2015) Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(i) ions. Analyst 140(19):6676–6683

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Niu X, Meng S, Li X, He Y, Pan J, Qiu F, Zhao H, Lan M (2018) Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens Actuators B Chem 273:400–407

    Article  CAS  Google Scholar 

  23. He SB, Chen FQ, Xiu LF, Peng HP, Deng HH, Liu AL, Chen W, Hong GL (2019) Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan–coated palladium nanozyme. Anal Bioanal Chem 412(2):499–506

    Article  PubMed  CAS  Google Scholar 

  24. Xu X, Wang L, Zou X, Wu S, Pan J, Li X, Niu X (2019) Highly sensitive colorimetric detection of arsenite based on reassembly-induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme. Sens Actuators B Chem 298:126876

    Article  CAS  Google Scholar 

  25. Moscoso R, Barrientos C, Moris S, Squella JA (2019) Electrocatalytic oxidation of NADH in a new nanostructured interface with an entrapped butylpyrene nitroaromatic derivative. J Electroanal Chem 837:48–54

    Article  CAS  Google Scholar 

  26. Iyanagi T (2019) Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. Biochim Biophys Acta 1860(3):233–258

    Article  CAS  Google Scholar 

  27. Liang P, Yu H, Guntupalli B, Xiao Y (2015) Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles. ACS Appl Mater Inter 7(27):15023–15030

    Article  CAS  Google Scholar 

  28. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic Growth of Au Nanoparticles by NAD(P)H Cofactors: Optical Sensors for NAD(P)+-Dependent Biocatalyzed Transformations. Angew Chem Int Ed 116(34):4619–4622

    Article  Google Scholar 

  29. Brumaghim JL, Li Y, Henle E, Linn S (2003) Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278(43):42495–42504

    Article  CAS  PubMed  Google Scholar 

  30. Yang JD, Chen BL, Zhu XQ (2018) New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Nonalkaline Media. J Phys Chem B 122:6888–6898

    Article  CAS  PubMed  Google Scholar 

  31. Zheng S, Zhang Q, Yin D, Gu H, Zhang J, Li W, Fu Y (2020) NADPH-guided synthesis of iodide-responsive nanozyme: synergistic effects in nanocluster growth and peroxidase-like activity. J Mater Sci 56:4909–4921

    Article  CAS  Google Scholar 

  32. Zheng S, Gu H, Yin D, Zhang J, Li W, Fu Y (2020) Biogenic synthesis of AuPd nanocluster as a peroxidase mimic and its application for colorimetric assay of acid phosphatase. Colloids Surf Physicochem Eng Asp 589:124444

    Article  CAS  Google Scholar 

  33. Chen WH, Vazquez-Gonzalez M, Kozell A, Cecconello A, Willner I (2018) Cu2+-Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme. Small 14(5):1703149

    Article  CAS  Google Scholar 

  34. Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB (2018) Biocatalytic C= C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed 130(42):14021–14024

    Article  Google Scholar 

  35. Li W, Fu Y, Fu Y, Wang X, Zhang J (2013) G-/C-rich Oligonucleotides Stabilized Pd Nanocatalysts for the Suzuki Coupling Reaction Under Mild Conditions. Catal Letters 143(6):578–586

    Article  CAS  Google Scholar 

  36. Dai S, Wu X, Zhang J, Fu Y, Li W (2018) Coenzyme A-regulated Pd nanocatalysts for formic acid-mediated reduction of hexavalent chromium. Chem Eng J 351:959–966

    Article  CAS  Google Scholar 

  37. Cao R, Li B (2011) A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem Commun (Camb) 47(10):2865–2867

    Article  CAS  Google Scholar 

  38. Walker CP, Royston D (2002) Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies. Br J Anaesth 88(6):848–863

    Article  CAS  PubMed  Google Scholar 

  39. Thirupathi P, Neupane LN, Lee KH (2015) Fluorescent peptide-based sensors for the ratiometric detection of nanomolar concentration of heparin in aqueous solutions and in serum. Anal Chim Acta 873:88–98

    Article  CAS  PubMed  Google Scholar 

  40. Zhan R, Fang Z, Liu B (2010) Naked-eye detection and quantification of heparin in serum with a cationic polythiophene. Anal Chem 82(4):1326–1333

    Article  CAS  PubMed  Google Scholar 

  41. Deng HH, Weng SH, Huang SL, Zhang LN, Liu AL, Lin XH, Chen W (2014) Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 852:218–222

    Article  CAS  PubMed  Google Scholar 

  42. Ding Y, Shi L, Wei H (2015) A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chem Sci 6(11):6361–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26(6):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu L, Liao H, Feng L, Wang M, Fu W (2018) Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal Chem 90(10):6247–6252

    Article  CAS  PubMed  Google Scholar 

  45. Liao H, Liu Y, Chen M, Wang M, Yuan H, Hu L (2019) A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles. Microchim Acta 186(5):274

    Article  CAS  Google Scholar 

  46. Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X (2017) Monitoring of heparin activity in live rats using metal–organic framework nanosheets as peroxidase mimics. Anal Chem 89(21):11552–11559

    Article  CAS  PubMed  Google Scholar 

  47. He SB, Yang L, Lin XL, Chen LM, Peng HP, Deng HH, Xia XH, Chen W (2020) Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta 211:120707

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Huang Q, Li W, Zhang J, Fu Y (2019) N-Acety-L-Cysteine-Stabilized Pt Nanozyme for Colorimetric Assay of Heparin. J Anal Test 3(3):277–285

    Article  Google Scholar 

  49. Gu H, Huang Q, Zhang J, Li W, Fu Y (2020) Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf Physicochem Eng Asp 606:125455

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (21878225, 21776215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 6017 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zheng, S., Zhang, J. et al. Peroxidase Mimicking Activity of Palladium Nanocluster Altered by Heparin. Catal Lett 151, 2537–2546 (2021). https://doi.org/10.1007/s10562-021-03530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03530-x

Keywords

Navigation