Skip to main content
Log in

Zr-DBS with Sulfonic Group: A Green and Highly Efficient Catalyst for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The alcoholysis of furfuryl alcohol (FA) produce ethyl levulinate (EL) plays a crucial role in the field of biomass conversion. In this work, a novel Zr-base catalyst with sulfonic groups in its structure was prepared by the co-precipitation of sodium dodecyl benzene sulfonate and ZrOCl2 (Zr-DBS) under non-toxic conditions. It was found that Zr-DBS has an excellent catalytic performance for this reaction and an EL yield of 95.27% could be achieved. Besides, Zr-DBS could be easily separated from the reaction system and reused at least four times without a significantly decrease in activity. Meanwhile, Zr-DBS was characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption, inductively coupled plasma optical emission spectroscopy (ICP-OES) and Temperature-programmed desorption of ammonia (NH3-TPD). The main reason for the high catalytic activity of the Zr-DBS was that the synergetic effects of Lewis and Brønsted acid sites and appropriate textural properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Hui W, He XM, Xu XY et al (2020) Highly efficient cycloaddition of diluted and waste CO2 into cyclic carbonates catalyzed by porous ionic copolymers. J CO2 Util 36:169–176

    Article  CAS  Google Scholar 

  2. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  3. Antunes MM, Lima S, Neves P et al (2015) One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal 329:522–537

    Article  CAS  Google Scholar 

  4. Hui W, Zhou Y, Dong Y et al (2019) Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids. Green Energy Environ 4:49–55

    Article  Google Scholar 

  5. Wang T, Hu A, Xu G et al (2019) Porous Zr–thiophenedicarboxylate hybrid for catalytic transfer hydrogenation of bio-based furfural to furfuryl alcohol. Catal Lett 149:1845–1855

    Article  CAS  Google Scholar 

  6. Wang K, Liu Y, Wu W et al (2020) Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium. Catal Lett 150:322–331

    Article  CAS  Google Scholar 

  7. Tian Y, Zhang R, Zhao W et al (2020) A new sulfonic acid-functionalized organic polymer catalyst for the synthesis of biomass-derived alkyl levulinates. Catal Lett. https://doi.org/10.1007/s10562-020-03253-5

    Article  Google Scholar 

  8. Chen H, Xu Q, Li H et al (2020) Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over Ni supported on equilibrium fluid-catalytic-cracking catalysts. Catal Lett. https://doi.org/10.1007/s10562-020-03326-5

    Article  Google Scholar 

  9. Zhao D, Prinsen P, Wang Y et al (2018) Continuous flow alcoholysis of furfuryl alcohol to alkyl levulinates using zeolites. ACS Sustain Chem Eng 6:6901–6909

    Article  CAS  Google Scholar 

  10. Rao BS, Kumari PK, Dhanalakshmi D, Lingaiah N (2017) Selective conversion of furfuryl alcohol into butyl levulinate over zinc exchanged heteropoly tungstate supported on niobia catalysts. Mol Catal 427:80–86

    Article  CAS  Google Scholar 

  11. Zhao D, Wang Y, Delbecq F, Len C (2019) Continuous flow conversion of alkyl levulinates into Γ-valerolactone in the presence of Ru/C as catalyst. Mol Catal 475:110456

    Article  CAS  Google Scholar 

  12. Zhang Y, Tong X, Yu L et al (2019) Highly efficient catalytic valorization of biomass-derived hexoses and furfuryl alcohol in the presence of polymer-based catalysts. Green Energy Environ 4:424–431

    Article  Google Scholar 

  13. Song J, Zhou B, Zhou H et al (2015) Porous zirconium-phytic acid hybrid: a highly efficient catalyst for meerwein-ponndorf-verley reductions. Angew Chem Int Ed 54:9399–9403

    Article  CAS  Google Scholar 

  14. Zhu S, Guo J, Wang X et al (2017) Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals. Chemsuschem 10:2547–2559

    Article  CAS  PubMed  Google Scholar 

  15. Démolis A, Essayem N, Rataboul F (2014) Synthesis and applications of alkyl levulinates. ACS Sustain Chem Eng 2:1338–1352

    Article  CAS  Google Scholar 

  16. Lima TM, Lima CGS, Rathi AK et al (2016) Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green Chem 18:5586–5593

    Article  CAS  Google Scholar 

  17. Chappaz A, Lai J, De Oliveira VK et al (2018) Selective conversion of concentrated feeds of furfuryl alcohol to alkyl levulinates catalyzed by metal triflates. ACS Sustain Chem Eng 6:4405–4411

    Article  CAS  Google Scholar 

  18. Peng L, Tao R, Wu Y (2016) Catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate biofuel over common metal salts. Catalysts 6:143

    Article  CAS  Google Scholar 

  19. Wang G, Zhang Z, Song L (2014) Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem 16:1436–1443

    Article  CAS  Google Scholar 

  20. Chada RR, Koppadi KS, Enumula SS et al (2018) Continuous synthesis of fuel additives alkyl levulinates via alcoholysis of furfuryl alcohol over silica supported metal oxides. Catal Lett 148:1731–1738

    Article  CAS  Google Scholar 

  21. Gitis V, Chung SH, Raveendran Shiju N (2018) Conversion of furfuryl alcohol into butyl levulinate with graphite oxide and reduced graphite oxide. FlatChem 10:39–44

    Article  CAS  Google Scholar 

  22. Song D, An S, Lu B et al (2015) Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl Catal B Environ 179:445–457

    Article  CAS  Google Scholar 

  23. Siva Sankar E, Saidulu Reddy K, Jyothi Y et al (2017) Alcoholysis of furfuryl alcohol into n-butyl levulinate over SBA-16 Supported heteropoly acid catalyst. Catal Lett 147:2807–2816

    Article  CAS  Google Scholar 

  24. Wang Y, Zhao D, Triantafyllidis KS et al (2020) Microwave-assisted catalytic upgrading of bio-based furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon. Mol Catal 480:110630

    Article  CAS  Google Scholar 

  25. Sha Y, Xiao Z, Zhou H et al (2017) Direct use of humic acid mixtures to construct efficient Zr-containing catalysts for Meerwein-Ponndorf-Verley reactions. Green Chem 19:4829–4837

    Article  CAS  Google Scholar 

  26. Zhai P, Lv G, Cai Z et al (2019) Efficient production of ethyl levulinate from furfuryl alcohol catalyzed by modified zirconium phosphate. ChemistrySelect 4:3940–3947

    Article  CAS  Google Scholar 

  27. Tiwari MS, Gawade AB, Yadav GD (2017) Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol. Green Chem 19:963–976

    Article  CAS  Google Scholar 

  28. Song D, An S, Sun Y, Guo Y (2016) Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J Catal 333:184–199

    Article  CAS  Google Scholar 

  29. Neves P, Russo PA, Fernandes A et al (2014) Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Appl Catal A Gen 487:148–157

    Article  CAS  Google Scholar 

  30. Xie Y, Li F, Wang J et al (2017) Catalytic transfer hydrogenation of ethyl levulinate to Γ-valerolactone over a novel porous Zirconium trimetaphosphate. Mol Catal 442:107–114

    Article  CAS  Google Scholar 

  31. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22:24862–24869

    Article  CAS  Google Scholar 

  32. Dubey N, Pal A (2012) Micellar solubilization of octan-1-ol in aqueous solutions of SDBS and TTAB. J Mol Liq 172:12–19

    Article  CAS  Google Scholar 

  33. Ge X, Li H, Wu L et al (2017) Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. J Appl Polym Sci 134:1–8

    Article  CAS  Google Scholar 

  34. Xu S, Yu J, Sun Y, Wu S (2015) Synthesis and characterization of organic intercalated layered double hydroxides and their application in bitumen modification. Mater Chem Phys 152:54–61

    Article  CAS  Google Scholar 

  35. Zhou S, Dai F, Xiang Z et al (2019) Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl Catal B Environ 248:31–43

    Article  CAS  Google Scholar 

  36. Thorstenson TA, Urban MW (1993) Surface and interfacial FTIR spectroscopic studies of latexes. IV. The effect of surfactant structure on the copolymer–surfactant interactions. J Appl Polym Sci 47:1381–1386

    Article  CAS  Google Scholar 

  37. Xue Z, Zhang J, Peng L et al (2014) Poly(ethylene glycol) stabilized mesoporous metal-organic framework nanocrystals: efficient and durable catalysts for the oxidation of benzyl alcohol. ChemPhysChem 15:85–89

    Article  CAS  PubMed  Google Scholar 

  38. Peng L, Zhang J, Li J et al (2012) Surfactant-directed assembly of mesoporous metal–organic framework nanoplates in ionic liquids. Chem Commun 48:8688–8690

    Article  CAS  Google Scholar 

  39. Côté AP, Shimizu GKH (2003) The supramolecular chemistry of the sulfonate group in extended solids. Coord Chem Rev 245:49–64

    Article  CAS  Google Scholar 

  40. Zhao Y, Zhang J, Han B et al (2011) Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50:636–639

    Article  CAS  Google Scholar 

  41. Peng L, Gao X, Chen K (2015) Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 160:123–131

    Article  CAS  Google Scholar 

  42. Liu H, Li Y, Jiang H et al (2012) Significant promoting effects of Lewis acidity on Au–Pd systems in the selective oxidation of aromatic hydrocarbons. Chem Commun 48:8431–8433

    Article  CAS  Google Scholar 

  43. Guo Q, Yang F, Liu X et al (2020) Low-cost synthesis of nanoaggregate SAPO-34 and its application in the catalytic alcoholysis of furfuryl alcohol. Chin J Catal 41:1772–1781

    Article  CAS  Google Scholar 

  44. Lu B, An S, Song D et al (2015) Design of organosulfonic acid functionalized organosilica hollow nanospheres for efficient conversion of furfural alcohol to ethyl levulinate. Green Chem 17:1767–1778

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_1777)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Wang, X. et al. Zr-DBS with Sulfonic Group: A Green and Highly Efficient Catalyst for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Lett 151, 2622–2630 (2021). https://doi.org/10.1007/s10562-020-03516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03516-1

Keywords

Navigation