Skip to main content
Log in

Dynamics of Entanglement and Statistical Properties in Atom-Field Interaction

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of entanglement between a single two-level atom interacting with one-mode cavity field is investigated with zero and large detuning parameters. The von Neumann entropy and concurrence measures are used to characterize the degree of entanglement. We find that the entanglement shows the oscillating behavior which depends on the initial amplitude of the coherent field, detuning parameter, and atom-field coupling constant. Specially, we study the generation of the robust maximally entangled state and conclude that the intensity of the coherent field and detuning parameter can be utilized as the control parameters for generating robust maximally entangled state. At the end, some important statistical features such as Wigner function, Mandel parameter, and second-order correlation function will be discussed. The comparison between the entanglement and Wigner function shows that for \(\chi t=(n+\frac {1}{2})\pi \), the maximum of Wigner function has information about the entanglement between the atom and field in the Jaynes-Cummings model. Moreover, the Mandel parameter and consequently the second-order correlation function show that the radiation field has Poissonian statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, . Phys. Rev. 47, 777 (1935)

    ADS  Google Scholar 

  2. M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  3. G. Benenti, G. Casati, G. Strini. Principles of Quantum Computation and Information (World Scientific Publishing Company, Singapore, 2004)

    Book  Google Scholar 

  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters, . Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. K. Ekert, . Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, . Nature. 390, 575 (1997)

    Article  ADS  Google Scholar 

  7. E. T. Jaynes, F. W. Cummings, Proc. IEEE 51 (1963)

  8. R. Juarez-Amaro, A. Zuniga-Segundo, A. Zuniga-Segundo, . Appl. Math. Inf. Sci. 9, 299 (2015)

    Article  Google Scholar 

  9. S. B. Zheng, G. C. Guo, . Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  10. L. Zhou, G. H. Yang, . J. Phys. B. 39, 5143 (2006)

    Article  ADS  Google Scholar 

  11. Y. H. Hu, Y. G. Tan, . Phys. Scr. 89, 0751031 (2014)

    Article  Google Scholar 

  12. N. Metwally, M. Abdelaty, A. -S. F. Obada, . Chaos, Solitons and Fractals. 22, 529 (2004)

    Article  ADS  Google Scholar 

  13. S. B. Zheng, . Opt. Commun. 167, 111 (1999)

    Article  ADS  Google Scholar 

  14. X. Q. Yan, . Chaos, Solitons and Fractals. 41, 1645 (2009)

    Article  ADS  Google Scholar 

  15. J. S. Zhang, J. B. Xu, . Opt. Commun. 282, 2543 (2009)

    Article  ADS  Google Scholar 

  16. K. Zeng, M. F. Fang, Chin. Phys. Soc. 14(10) (2005)

  17. T. Yu, J. H. Eberly, . Science. 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Q. Yang, M. Yang, Z. L. Cao, . Chin. Phys. Lett. 25(3), 825 (2008)

    Article  ADS  Google Scholar 

  19. J. Cheng, X. Chen, C. J. Shan, . Int. J. Theor. Phys. 57, 1823 (2018)

    Article  Google Scholar 

  20. Y. Ji, Y. Liu, . Optik. 127, 3211 (2016)

    Article  ADS  Google Scholar 

  21. A. Karimi, M. K. Tavassoly, . Quant. Inf. Process. 15, 1513 (2016)

    Article  ADS  Google Scholar 

  22. J. von Neumann. Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)

    MATH  Google Scholar 

  23. W. K. Wootters, . Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  24. W. K. Wootters, . Quant. Inf. Comput. 1(1), 27 (2001)

    Google Scholar 

  25. E. Wigner, . Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  26. L. Mandel, . Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  27. R. J. Glauber, . Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Gerry, P. Knight. Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  29. G. Najarbashi, S. Mirzaei, . Int. J. Theor. Phys. 55, 1336 (2016)

    Article  Google Scholar 

  30. G. Najarbashi, S. Mirzaei, . Int. J. Theor. Phys. 55, 2311 (2016)

    Article  Google Scholar 

  31. M. Hillery, R. F. O’Connell, M. O. Scully, E. P. Wigner, . Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Banerji, R. P. Singh, A. Bandyopadhyay, . Opt. Commun. 330, 85 (2014)

    Article  ADS  Google Scholar 

  33. G. Najarbashi, S. Mirzaei, . Opt. Commun. 377, 33 (2016)

    Article  ADS  Google Scholar 

  34. S. Mirzaei, G. Najarbashi, . Rep. Math. Phys. 83, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.J. Sakurai. Modern Quantum Mechanics (Addison Wesley Publishing Company, Boston, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mirzaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Hamiltonian of the J-C model is \(\hat {H}=\hat {H_{0}}+\hat {H_{I}}\) where the interaction-free Hamiltonian is:

$$ \hat{H_{0}}= \frac{1}{2}\hbar {\omega_{0}}{\hat \sigma_{z}} + \hbar \omega {\hat a^{\dag} }\hat a, $$

and the atom-field interaction Hamiltonian with the rotating-wave approximation is:

$$ \hat{H_{I}}=\hbar \lambda (\hat{A}+\hat{A^{\dag}}), $$

where \(\hat {A}=\hat {a}\hat {\sigma }_{+}\) and \(\hat {A}^{\dag }=\hat {a}^{\dag }\hat {\sigma }_{-}\). The time-dependent Schrodinger-like equation in the interaction picture is [35]:

$$ i\hbar \frac{d}{{dt}}{\left| {\psi (t)} \right\rangle_{IP}} = {{\hat H}_{IP}(t)}{\left| {\psi (t)} \right\rangle_{IP}}, $$
(A.1)

with \({{\hat H}_{IP}(t)} = {e^{{i{H_{0}}t}/\hbar }}{H_{I}}{e^{- {i{H_{0}}t}/\hbar }}\). Using Baker-Hausdorf lemma, we have:

$$ {{\hat H}_{IP}(t)} = \hbar \lambda ({e^{i\varDelta t}}\hat A + {e^{- i\varDelta t}}{{\hat A}^{\dag} }). $$
(A.2)

The solution of (A.1) is given by:

$$ {\left| {\psi (t)} \right\rangle_{IP}} = \hat{\mathcal{T}}\left[ {\exp \left( - \frac{i}{\hbar }{\int\limits_{0}^{t}} {dt'{\hat{H}_{IP}}(t^{\prime})} \right)} \right]{\left| {\psi (0)} \right\rangle_{IP}}, $$
(A.3)

where \(\hat {\mathcal {T}}\) is the time-ordering operator. By substituting (A.2) in (A.3) and using perturbation expansion, after some simple algebra we found that:

$$ \begin{array}{@{}rcl@{}} \hat{\mathcal{T}}\left[ {\exp \left( - \frac{i}{\hbar }{\int\limits_{0}^{t}} {dt^{\prime}{\hat{H}_{IP}}(t^{\prime})} \right)} \right]&\approx&1-\frac{\lambda}{\varDelta}\left[\hat{A}(e^{i{\varDelta} t}-1)\right.\\ &&\left.-\hat{A}^{\dag}(e^{-i{\varDelta} t}-1)\right]-\frac{i\lambda^{2}t}{\varDelta}[\hat{A},\hat{A}^{\dag}]\\ &&+\mathcal{O}\left( \frac{\lambda^{2}}{{\varDelta}^{2}}\right), \end{array} $$

clearly for △≫ λ the second and last terms are neglected and thus we have:

$$ \hat{\mathcal{T}}\left[ {\exp \left( - \frac{i}{\hbar }{\int\limits_{0}^{t}} {dt'{\hat{H}_{IP}}(t^{\prime})} \right)} \right]\approx 1-\frac{i}{\hbar}\hat{H}_{eff}t. $$

where

$$ \hat{H}_{eff}=\frac{{\hbar {\lambda^{2}}}}{\varDelta }[\hat A,{{\hat A}^{\dag} }], $$

substitution \(\hat {A}\) and \(\hat {A}^{\dag }\) leads to the interaction Hamiltonian for the non-resonance case with large detuning as follows:

$$ {\hat{H}_{eff}} = \hbar \chi ({\hat{\sigma}_ + }{\hat{\sigma}_ - } + {\hat{a}^{\dag} }\hat{a}{\hat{\sigma}_{z}}). $$

where \(\chi =\frac {\lambda ^{2}}{\varDelta }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, S. Dynamics of Entanglement and Statistical Properties in Atom-Field Interaction. Braz J Phys 51, 361–368 (2021). https://doi.org/10.1007/s13538-020-00852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00852-w

Keywords

Navigation