Skip to main content
Log in

Time Integration Algorithms for Elasto-Viscoplastic Models with Multiple Hardening Laws for Geomaterials: Enhancement and Comparative Study

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

To describe the behaviours of geomaterials such as time-dependency, anisotropy and destructuration, multiple hardening parameters and laws are generally needed for application in advanced elasto-viscoplastic models. Time integration with stress updating is a key step in the application of elasto-viscoplastic models to engineering practice. However, the robustness of time integration algorithms for such complicated models has rarely been studied, creating difficulties in selecting and improving algorithms. This paper focuses on use of three typical implicit time integration algorithms—Katona, Stolle and cutting plane—for integration of an advanced elasto-viscoplastic model. First, all selected algorithms are improved to fit the characteristics of the advanced model with multiple hardening parameters and are combined with adaptive substepping procedures to enhance their performance. Then a step-changed undrained triaxial test is simulated at the integration point level, on the basis of which variations in iteration number and relative error of stresses with step size are investigated and compared. Furthermore, the advanced model using different algorithms is implemented into finite element code, with global convergence and calculation time investigated and compared for two boundary value problems: a biaxial test and an embankment. All comparisons demonstrate that the modified cutting plane algorithm with substepping is the most robust and efficient one, followed by the modified Stolle with substepping and the modified Katona with substepping, for an advanced model with multiple hardening parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable, possible based on request to authors.

References

  1. Leroueil S, Kabbaj M, Tavenas F, Bouchard R (1985) Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Géotechnique 35(2):159–180. https://doi.org/10.1680/geot.1985.35.2.159

    Article  Google Scholar 

  2. Yin JH, Cheng CM (2006) Comparison of strain-rate dependent stress-strain behavior from K0-consolidated compression and extension tests on natural Hong Kong Marine deposits. Mar Georesour Geotec 24(2):119–147. https://doi.org/10.1080/10641190600704780

    Article  MathSciNet  Google Scholar 

  3. Yin Z-Y, Zhu QY, Yin JH, Ni Q (2014) Stress relaxation coefficient and formulation for soft soils. Géotech Lett 4(1):45–51. https://doi.org/10.1680/geolett.13.00070

    Article  Google Scholar 

  4. Zhu QY, Yin Z-Y, Hicher PY, Shen SL (2016) Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech 11(4):887–900. https://doi.org/10.1007/s11440-015-0411-y

    Article  Google Scholar 

  5. Díaz Rodríguez JA, Leroueil S, Alemán JD (1992) Yielding of Mexico City clay and other natural clays. J Geotech Engrg 118(7):981–995. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:7(981)

    Article  Google Scholar 

  6. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for soft clays. Can Geotech J 40(2):403–418. https://doi.org/10.1139/t02-119

    Article  Google Scholar 

  7. Yin Z-Y, Chang CS, Hicher P-Y, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plasticity 25(8):1413–1435. https://doi.org/10.1016/j.ijplas.2008.11.009

    Article  MATH  Google Scholar 

  8. Burland JB (1990) On the compressibility and shear strength of natural clays. Géotechnique 40(3):329–378. https://doi.org/10.1680/geot.1990.40.3.329

    Article  Google Scholar 

  9. Leroueil S, Vaughan PR (1990) The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3):467–488. https://doi.org/10.1680/geot.1990.40.3.467

    Article  Google Scholar 

  10. Yin Z-Y, Hattab M, Hicher P-Y (2011) Multiscale modeling of a sensitive marine clay. Int J Numer Anal Meth Geomech 35(15):1682–1702. https://doi.org/10.1002/nag.977

    Article  Google Scholar 

  11. Kutter BL, Sathialingam N (1992) Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Géotechnique 42(3):427–441. https://doi.org/10.1680/geot.1992.42.3.427

    Article  Google Scholar 

  12. Vermeer PA, Neher HP (1999) A soft soil model that accounts for creep. In: Proceedings of Plaxis Symposium ‘Beyond 2000 in Computational Geotechnic’. pp 249–262

  13. Yin JH, Zhu JG, Graham J (2002) A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Can Geotech J 39(1):157–173. https://doi.org/10.1139/t01-074

    Article  Google Scholar 

  14. Rocchi G, Fontana M, Da Prat M (2003) Modelling of natural soft clay destruction processes using viscoplasticity theory. Géotechnique 53(8):729–745. https://doi.org/10.1680/geot.2003.53.8.729

    Article  Google Scholar 

  15. Kelln C, Sharma J, Hughes D, Graham J (2009) Finite element analysis of an embankment on a soft estuarine deposit using an elastic-viscoplastic soil model. Can Geotech J 46(3):357–368. https://doi.org/10.1139/T08-129

    Article  Google Scholar 

  16. Yin Z-Y, Hicher P-Y (2008) Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. Int J Numer Anal Meth Geomech 32(12):1515–1535. https://doi.org/10.1002/nag.684

    Article  MATH  Google Scholar 

  17. Hinchberger SD, Qu G (2009) Viscoplastic constitutive approach for rate-sensitive structured clays. Can Geotech J 46(6):609–626. https://doi.org/10.1139/T08-133

    Article  Google Scholar 

  18. Zhou C, Yin JH, Zhu JG, Cheng CM (2005) Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behaviour of K0-consolidated natural marine clays in triaxial shear tests. Int J Geomech ASCE 5(3):218–232. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(218)

    Article  Google Scholar 

  19. Leoni M, Karstunen M, Vermeer PA (2008) Anisotropic creep model for soft soils. Géotechnique 58(3):215–226. https://doi.org/10.1680/geot.2008.58.3.215

    Article  Google Scholar 

  20. Yin Z-Y, Chang CS, Karstunen M, Hicher P-Y (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solid Struct 47(5):665–677. https://doi.org/10.1016/j.ijsolstr.2009.11.004

    Article  MATH  Google Scholar 

  21. Kimoto S, Oka F (2005) An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behaviour. Soils Found 45(2):29–42. https://doi.org/10.3208/sandf.45.2_29

    Article  Google Scholar 

  22. Karstunen M, Yin Z-Y (2010) Modelling time-dependent behaviour of Murro test embankment. Géotechnique 60(10):735–749. https://doi.org/10.1680/geot.8.P.027

    Article  Google Scholar 

  23. Yin Z-Y, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng ASCE 137(11):1103–1113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000527

    Article  Google Scholar 

  24. Katona MG (1984) Evaluation of viscoplastic cap model. J Geotech Eng ASCE 110(8):1106–1125

    Article  Google Scholar 

  25. Desai CS, Zhang D (1987) Viscoplastic model for geologic materials with generalized flow rule. Int J Numer Anal Meth Geomech 11(6):603–620

    Article  Google Scholar 

  26. Stolle DFE, Vermeer PA, Bonnier PG (1999) Time integration of a constitutive law for soft clays. Commun Numer Meth Eng 15(8):603–609

    Article  Google Scholar 

  27. Tong X, Tuan CY (2007) Viscoplastic cap model for soils under high strain rate loading. J Geotech Geoenviron Eng 133(2):206–214. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(206)

    Article  Google Scholar 

  28. Yin Z-Y, Yin J-H, Huang H-W (2015) Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Mar Georesour Geotechnol 33(1):79–91. https://doi.org/10.1080/1064119X.2013.797060

    Article  Google Scholar 

  29. Karstunen M, Rezania M, Sivasithamparam N, Yin Z-Y (2015) Comparison of anisotropic rate-dependent models for modeling consolidation of soft clays. Int J Geomech ASCE 15(5):A4014003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000267

    Article  Google Scholar 

  30. Higgins W, Chakraborty T, Basu D (2013) A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int J Numer Anal Meth Geomech 37(15):2590–2610. https://doi.org/10.1002/nag.2153

    Article  Google Scholar 

  31. Ortiz M, Simo JC (1986) An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int J Numer Meth Eng 23(3):353–366. https://doi.org/10.1002/nme.1620230303

    Article  MathSciNet  MATH  Google Scholar 

  32. Yin Z-Y, Li J, Jin Y-F, Liu F-Y (2019) Estimation of robustness of time integration algorithms for elasto-viscoplastic modeling of soils. Int J Geomech 19(2):04018197. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001351

    Article  Google Scholar 

  33. Li J, Yin Z-Y (2020) A modified cutting-plane time integration scheme with adaptive substepping for elasto-viscoplastic models. Int J Numer Methods Eng 121(17):3955–3978. https://doi.org/10.1002/nme.6394

    Article  MathSciNet  Google Scholar 

  34. Sheng D, Sloan SW, Yu HS (2000) Aspects of finite element implementation of critical state models. Comput Mech 26:185–196. https://doi.org/10.1007/s004660000166

    Article  MATH  Google Scholar 

  35. Yao Y, Sun D, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Meth Geomech 28(4):323–337. https://doi.org/10.1002/nag.340

    Article  MATH  Google Scholar 

  36. Yao Y, Sun D, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222. https://doi.org/10.1016/j.compgeo.2007.04.003

    Article  Google Scholar 

  37. Borja RI, Lee SR (1990) Cam-clay plasticity, part 1: implicit integration of elasto-plastic constitutive relations. Comput Methods Appl Mech Eng 78(1):49–72. https://doi.org/10.1016/0045-7825(90)90152-C

    Article  MATH  Google Scholar 

  38. Yin Z-Y, Jin Y-F, Shen S-L, Huang H-W (2017) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model. Acta Geotech 12(4):849–867. https://doi.org/10.1007/s11440-016-0486-0

    Article  Google Scholar 

  39. Plaxis, (2012) PLAXIS material models manual. Delft, Netherlands

    Google Scholar 

  40. Karstunen M, Wiltafsky C, Krenn H, Scharinger F, Schweiger HF (2006) Modelling the behaviour of an embankment on soft clay with different constitutive models. Int J Numer Anal Meth Geomech 30(10):953–982

    Article  Google Scholar 

  41. Jin YF, Yin Z-Y (2020) Enhancement of backtracking search algorithm for identifying soil parameters. Int J Numer Anal Meth Geomech. https://doi.org/10.1002/nag.3059

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports provided by the research project (Grant No. 15217220, N_PolyU534/20) of Research Grants Council of Hong Kong, the Fundamental Research Funds for the Central Universities (Grant No. 2019JBM083) and the National Natural Science Foundation of China (Grant No. U2034204) are gratefully acknowledged.

Funding

The financial supports provided by the research project (Grant No. 15217220, N_PolyU534/20) of Research Grants Council of Hong Kong, the Fundamental Research Funds for the Central Universities (Grant No. 2019JBM083) and the National Natural Science Foundation of China (Grant No. U2034204) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Model Parameters of Anicreep

Appendix: Model Parameters of Anicreep

State parameters and constants of ANICREEP model are summarised in Table 7 with their definitions and determination methods. Alternatively, these parameters can also be easily identified by optimization methods as demonstrated by Yin et al. [38] and Jin and Yin [41].

Table 7 State parameters and constants of ANICREEP model for intact natural soft clays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yin, ZY. Time Integration Algorithms for Elasto-Viscoplastic Models with Multiple Hardening Laws for Geomaterials: Enhancement and Comparative Study. Arch Computat Methods Eng 28, 3869–3886 (2021). https://doi.org/10.1007/s11831-021-09527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09527-4

Navigation