Skip to main content
Log in

Effect of pre-cut hole diameter on deformation mechanics in multi-stage incremental hole flanging of deep drawing quality steel

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Incremental hole flanging (IHF) is a relatively new sheet metal forming process to produce intricate shapes without using dedicated punches and dies. The present work focuses on understanding the mechanics of the multi-stage IHF process through experimental studies and the finite element approach. The IHF experiments were performed on deep drawing quality steel sheets with a pre-cut hole diameter of 45 mm, 50 mm, 60 mm, and 70 mm. The cylindrical flanges were formed in four stages with an initial wall angle of 60° to a final angle 90° with an angle increment of 10° in each stage. The maximum and minimum hole expansion ratio was found to be 2.06 and 1.17 respectively. The fracture was observed in a blank of 45 mm pre-cut hole diameter in the third stage at 40 mm depth. The fracture forming limit diagram (FFLD) was determined from incrementally formed varying wall angle conical and pyramidal frustums. Consequently, six different ductile damage models incorporating Hill48 anisotropy plastic theory were successfully calibrated. The Ayyada model showed good agreement with experimental FFLD as compared to all other models. The fracture limit determined experimentally and using the Ayyada model was implemented in the finite element simulation of the IHF process to predict the formability in terms of in-plane strain distribution, forming forces, and thickness distribution. The predicted results matched accurately with the experimental data within a 6% error for all investigated conditions. Noticeably, the strain path in IHF had three deformation modes viz. plane strain, bi-axial stretching, and uni-axial tension, which was comprehended using texture analyses. Finally, irrespective of the initial pre-cut hole diameter, the surface roughness was found to decrease with the number of stages of the IHF process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kalpakjian S, Schmid SR. Manufacturing engineering and technology. 7th ed. Pearson; 2014

  2. Dewang Y, Purohit R, Tenguria N. A study on sheet metal hole-flanging process. Mater Today Proc. 2017;4:5421–8.

    Article  Google Scholar 

  3. Chen T-C. An analysis of forming limit in the elliptic hole-flanging process of sheet metal. J Mater Process Technol. 2007;192:373–80.

    Article  Google Scholar 

  4. Huang J, Li S, Rao J, Zhang HM, Li XF. Study on process parameter optimization method by numerical simulation of sheet metal forming. J Chin Mech Eng. 2004;15:648–54.

    Google Scholar 

  5. Huang Y-M, Chien KH. Influence of cone semi-angle on the formability limitation of the hole-flanging process. Int J Adv Manuf Technol. 2002;19:597–606.

    Article  Google Scholar 

  6. Thipprakmas S, Jin M, Murakawa M. Study on flanged shapes in fineblanked-hole flanging process (FB-hole flanging process) using finite element method (FEM). J Mater Process Technol. 2007;192:128–33.

    Article  Google Scholar 

  7. Hyun DI, Oak SM, Kang SS, Moon YH. Estimation of hole flangeability for high strength steel plates. J Mater Process Technol. 2002;130:9–13.

    Article  Google Scholar 

  8. Tang SC. Large elasto-plastic strain analysis of flanged hole forming. Comput Struct. 1981;13:363–70.

    Article  Google Scholar 

  9. Krichen A, Kacem A, Hbaieb M. Blank-holding effect on the hole-flanging process of sheet aluminum alloy. J Mater Process Technol. 2011;211:619–26.

    Article  CAS  Google Scholar 

  10. Stachowicz F. Estimation of hole-flange ability for deep drawing steel sheets. Arch Civ Mech Eng. 2008;8:167–72.

    Article  Google Scholar 

  11. Huang Y-M, Chien K-H. The formability limitation of the hole-flanging process. J Mater Process Technol. 2001;117:43–51.

    Article  Google Scholar 

  12. Takuda H, Mori K, Fujimoto H, Hatta N. Prediction of forming limit in bore-expanding of sheet metals using ductile fracture criterion. J Mater Process Technol. 1999;92:433–8.

    Article  Google Scholar 

  13. Elbitar T, Gemeal A. Finite element analysis of deep drawing and hole flanging processing of an oil filter cover. Int J Mater Form. 2008;1:125–8.

    Article  Google Scholar 

  14. Uthaisangsuk V, Prahl U, Bleck W. Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling. Comput Mater Sci. 2009;45:617–23.

    Article  CAS  Google Scholar 

  15. Comstock RJ, Scherrer DK, Adamczyk RD. Hole expansion in a variety of sheet steels. J Mater Eng Perform. 2006;15:675–83.

    Article  CAS  Google Scholar 

  16. Adamczyk RD, Michal GM. Sheared edge extension of high-strength cold-rolled steels. J Appl Metalwork. 1986;4:157–63.

    Article  CAS  Google Scholar 

  17. Su H, Huang L, Li J, Ma F, Ma H, Huang P, et al. Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming. J Manuf Process. 2020;52:1–11.

    Article  Google Scholar 

  18. Bansal A, Lingam R, Yadav SK, Reddy NV. Prediction of forming forces in single point incremental forming. J Manuf Process. 2017;28:486–93.

    Article  Google Scholar 

  19. He A, Wang C, Liu S, Meehan PA. Switched model predictive path control of incremental sheet forming for parts with varying wall angles. J Manuf Process. 2020;53:342–55.

    Article  Google Scholar 

  20. Raju C, Haloi N, Narayanan CS. Strain distribution and failure mode in single point incremental forming (SPIF) of multiple commercially pure aluminum sheets. J Manuf Process. 2017;30:328–35.

    Article  Google Scholar 

  21. Min J, Kuhlenkötter B, Shu C, Störkle D, Thyssen L. Experimental and numerical investigation on incremental sheet forming with flexible die-support from metallic foam. J Manuf Process. 2018;31:605–12.

    Article  Google Scholar 

  22. Raujol-Veillé J, Toussaint F, Tabourot L, Vautrot M, Balland P. Experimental and numerical investigation of a short, thin-walled steel tube incremental forming process. J Manuf Process. 2015;19:59–66.

    Article  Google Scholar 

  23. Montanari L, Cristino VA, Silva MB, Martins PAF. A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming. Int J Adv Manuf Technol. 2013;69:1175–83.

    Article  Google Scholar 

  24. Cristino VA, Montanari L, Silva MB, Atkins AG, Martins PAF. Fracture in hole-flanging produced by single point incremental forming. Int J Mech Sci. 2014;83:146–54.

    Article  Google Scholar 

  25. Cui Z, Gao L. Studies on hole-flanging process using multistage incremental forming. CIRP J Manuf Sci Technol. 2010;2:124–8.

    Article  Google Scholar 

  26. Cao T, Lu B, Ou H, Long H, Chen J. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool. Int J Mach Tools Manuf. 2016;110:1–17.

    Article  Google Scholar 

  27. Borrego M, Morales-Palma D, Martinez-Donaire AJ, Centeno G, Vallellano C. Experimental study of hole-flanging by single-stage incremental sheet forming. J Mater Process Technol. 2016;237:320–30.

    Article  CAS  Google Scholar 

  28. ASTM E8/E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International: West Conshohocken, PA; 2016. https://doi.org/10.1520/E0008_E0008M-16AE01(www.astm.org)

  29. Prasad KS, Panda SK, Kar SK, Sen M, Murty SN, Sharma SC. Microstructures, forming limit and failure analyses of INCONEL 718 sheets for fabrication of aerospace components. J Mater Eng Perform. 2017;26:1513–30. https://doi.org/10.1007/s11665-017-2547-4.

    Article  CAS  Google Scholar 

  30. Prasad KS, Panda SK, Kar SK, Singh SK, Murty SVSN, Sharma SC. Effect of temperature and deformation speed on formability of IN718 sheets: experimentation and modelling. IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/418/1/012055.

    Article  Google Scholar 

  31. Elford M, Saha P, Seong D, Haque MDZ, Yoon JW. Benchmark 3-Incremental sheet forming. AIP Conf Proc. 2013;1567:227–61.

    Article  ADS  Google Scholar 

  32. Surech K, Regalla SP. Effect of time scaling and mass scaling in numerical simulation of incremental forming. Appl Mech Mater. 2014;612:105–10.

    Article  Google Scholar 

  33. Panicker SS, Prasad KS, Sawale G, Hazra S, Shollock B, Panda SK. Warm redrawing of AA6082 sheets and investigations into the effect of aging heat treatment on cup wall strength. Mater Sci Eng A. 2019;768:138445.

    Article  CAS  Google Scholar 

  34. Basak S, Prasad KS, Mehto A, Bagchi J, Ganesh YS, Mohanty S, et al. Parameter optimization and texture evolution in single point incremental sheet forming process. Proc Inst Mech Eng Part B J Eng Manuf. 2019;234:126–39.

    Article  Google Scholar 

  35. Singh SK, Limbadri K, Singh AK, Ram AM, Ravindran M, Krishna M, et al. Studies on texture and formability of Zircaloy-4 produced by pilgering route. J Mater Res Technol. 2019;8:2120–9.

    Article  CAS  Google Scholar 

  36. Ko YK, Lee JS, Huh H, Kim HK, Park SH. Prediction of fracture in hub-hole expanding process using a new ductile fracture criterion. J Mater Process Technol. 2007;187–188:358–62.

    Article  Google Scholar 

  37. Habibi N, Zarei-Hanzaki A, Abedi HR. An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol. 2015;224:102–16.

    Article  CAS  Google Scholar 

  38. Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC. Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: numerical modeling and experimental validation. Mater Sci Eng A. 2018;733:393–407.

    Article  CAS  Google Scholar 

  39. Cockcroft MG, Latham DJ. Ductility and the workability of Metals. J Inst Met. 1968;96:33–9.

    CAS  Google Scholar 

  40. Mcclintock FA. A criterion for ductile fracture by the growth of holes. J Appl Mech. 1968;363:363–71.

    Article  Google Scholar 

  41. Ayada M. Central bursting in extrusion of inhomogeneous materials. In: Proc. 2nd Int. Conf. Technol. Plast. Stuttgart, 1987, vol. 1, 1987, p. 553–8.

  42. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969;17:201–17.

    Article  ADS  Google Scholar 

  43. Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability in metal sheets, sheet material forming and formability. Proc. Seventh Bienn. Conf. IDDRG, 1972.

  44. Oh SI, Chen CC, Kobayashi S. Ductile fracture in axisymmetric extrusion and drawing-part 2: workability in extrusoin and drawing. J Eng Ind. 1979;101:36–44.

    Article  Google Scholar 

  45. Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623–42.

    Article  Google Scholar 

  46. Isik K, Silva MB, Tekkaya AE, Martins PAF. Formability limits by fracture in sheet metal forming. J Mater Process Technol. 2014;214:1557–65.

    Article  Google Scholar 

  47. Kurra S, Regalla SP. Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming. J Mater Res Technol. 2014;3:158–71.

    Article  CAS  Google Scholar 

  48. Cristino VAM, Silva MB, Wong PK, Martins PAF. Determining the fracture forming limits in sheet metal forming: a technical note. J Strain Anal Eng Des. 2017;52:467–71.

    Article  Google Scholar 

  49. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF. Single-point incremental forming and formability–failure diagrams. J Strain Anal Eng Des. 2008;43:15–35. https://doi.org/10.1243/03093247JSA340.

    Article  Google Scholar 

  50. Leu D-K, Chen T-C, Huang Y-M. Influence of punch shapes on the collar-drawing process of sheet steel. J Mater Process Technol. 1999;88:134–46.

    Article  Google Scholar 

  51. Masoumi M, Silva CC, Béreš M, Ladino DH, de Abreu HFG. Role of crystallographic texture on the improvement of hydrogen-induced crack resistance in API 5L X70 pipeline steel. Int J Hydrogen Energy. 2017;42:1318–26.

    Article  CAS  Google Scholar 

  52. Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC. Effect of solution treatment on deep drawability of IN718 sheets: experimental analysis and metallurgical characterization. Mater Sci Eng A. 2018;727:97–112. https://doi.org/10.1016/j.msea.2018.04.110.

    Article  CAS  Google Scholar 

  53. Masoumi M, Silva CC, de Abreu HFG. Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing. Corros Sci. 2016;111:121–31.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the BITS RIG grant, Project no. BITS/GAU/RIG/2017/73.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kurra.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this work.

Ethical standards

The authors state that ethical standards were not violated when preparing the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandla, P., Kurra, S., Prasad, K.S. et al. Effect of pre-cut hole diameter on deformation mechanics in multi-stage incremental hole flanging of deep drawing quality steel. Archiv.Civ.Mech.Eng 21, 16 (2021). https://doi.org/10.1007/s43452-020-00156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00156-5

Keywords

Navigation