Skip to main content

Advertisement

Log in

Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fiber-reinforced plastic (FRP) rebars can be the futuristic potential reinforcing material in place of mild steel (MS) rebars which are highly prone to corrosion. However, the bond properties of the FRP rebars are not consistent with those of mild steel rebars. Therefore, determination of bond strength properties of FRP rebars becomes essential. In this study, an investigation was conducted on 222 samples for bond strength data set for FRP rebars using various soft computing techniques such as multilinear regression, random forests, random tree, M5P, bagged-M5P tree, stochastic-M5P, and Gaussian process. Outcomes of accuracy assessment parameters, i.e., CC, MAE, and RMSE, suggest that bagged-M5P tree-based model is outperforming than other developed models CC, MAE, and RMSE whose values are 0.9530, 0.8970, and 1.2531, respectively, for testing stages. On assessing the data and the results, it was found that GP_PUK model is more appropriate than GP_RBF-based model for predicting the bond strength of FRP (MPa). On comparison of the RF and RT models, it was concluded that RF-based model performs better than RT models with CC, MAE, and RMSE values of 0.9427, 0.8674, and 1.3424, respectively, for testing stages. The results of the study also suggest that bagged-M5P model attains higher correlation with lesser RMSE values. Taylor diagram also verifies that bagged-M5P model performs better than other developed models. Sensitivity analysis suggests that bar embedment length to bar diameter (l/d) is the most influencing parameter for the prediction of bond strength of FRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hao, Q.D.; Wang, B.; Ou, J.P.: Fiber reinforced polymer rebar’s application to civil engineering. Concrete 9(1), 38–40 (2006)

    Google Scholar 

  2. Akbas, T.; Celik, O.C.; Yalcin, C.; Ilki, A.: Monotonic and cyclic bond behavior of deformed CFRP bars in high strength concrete. Polymers 8(6), 211 (2016)

    Article  Google Scholar 

  3. Cosenza, E.; Manfredi, G.; Realfonzo, R.: Behavior and modeling of bond of FRP rebars to concrete. J. Comp. Const. 1(2), 40–51 (1997)

    Article  Google Scholar 

  4. Edwards, A.D.; Yannopoulos, P.J.: Local bond-stress to slip relationships for hot rolled deformed bars and mild steel plain bars. J. Proceed. 76(3), 405–420 (1979)

    Google Scholar 

  5. Galati, N.; Vollintine, B.; Nanni, A.; Dharani, L.R.; Aiello, M.A.: Thermal effects on bond between FRP rebars and concrete. In: Advanced Polymer Composites for Structural Applications in Construction, pp. 501–508. Woodhead Publishing, Cambridge (2004).

  6. Benmokrane, B.; Tighiouart, B.: Bond strength and load distribution of composite GFRP reinforcing bars in concrete. Mater. J. 93(3), 254–259 (1996)

    Google Scholar 

  7. Makitani, E.; Irisawa, I.; Nishiura, N.: Investigation of bond in concrete member with fiber reinforced plastic bars. Spec. Publ. 138, 315–332 (1993)

    Google Scholar 

  8. Mazaheripour, H.; Barros, J.A.; Sena-Cruz, J.M.; Pepe, M.; Martinelli, E.: Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Compos. Struct. 95, 202–212 (2013)

    Article  Google Scholar 

  9. Okelo, R.; Yuan, R.L.: Bond strength of fiber reinforced polymer rebars in normal strength concrete. J. Compos. Const. 9(3), 203–213 (2005)

    Article  Google Scholar 

  10. Yan, F.; Lin, Z.: Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions. Compos. Struct. 161, 393–406 (2017)

    Article  Google Scholar 

  11. Yan, F.; Lin, Z.; Zhang, D.; Gao, Z.; Li, M.: Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution. Compos. B Eng. 116, 406–421 (2017)

    Article  Google Scholar 

  12. Alves, J.; El-Ragaby, A.; El-Salakawy, E.: Durability of GFRP bars’ bond to concrete under different loading and environmental conditions. J. Compos. Const. 15(3), 249–262 (2011)

    Article  Google Scholar 

  13. American Concrete Institute. ACI Committee 440.1R-06: Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute, Farmington Hills (2006).

  14. Ametrano, D.: Bond Characteristics of Glass Fibre Reinforced Polymer Bars Embedded in High Performance and Ultra-High Performance Concrete, pp. 1–132. Ryerson University, Toronto (2011).

  15. Köroğlu, M.A.: Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 26(1), 12–29 (2019)

    Article  Google Scholar 

  16. Bashir, R.; Ashour, A.: Neural network modelling for shear strength of concrete members reinforced with FRP bars. Compos. B Eng. 43(8), 3198–3207 (2012)

    Article  Google Scholar 

  17. Coelho, M.R.; Sena-Cruz, J.M.; Neves, L.A.; Pereira, M.; Cortez, P.; Miranda, T.: Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete. Const. Build. Mater. 126, 484–495 (2016)

    Article  Google Scholar 

  18. Bolandi, H.; Banzhaf, W.; Lajnef, N.; Barri, K.; Alavi, A.H.: An intelligent model for the prediction of bond strength of FRP bars in concrete: a soft computing approach. Technologies 7(2), 42 (2019)

    Article  Google Scholar 

  19. Kumar, M.; Sihag, P.; Singh, V.: Enhanced soft computing for ensemble approach to estimate the compressive strength of high strength concrete. J. Mater. Eng. Struct. JMES 6(1), 93–103 (2019)

    Google Scholar 

  20. Singh, B.; Sihag, P.; Tomar, A.; Sehgal, A.: Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches. J. Mater. Eng. Struct. JMES 6(4), 583–592 (2019)

    Google Scholar 

  21. Aggarwal, Y.; Aggarwal, P.; Sihag, P.; Pal, M.; Kumar, A.: Estimation of punching shear capacity of concrete slabs using data mining techniques. Int. J. Eng. 32(7), 908–914 (2019)

    Google Scholar 

  22. Kwin, C.T.; Talei, A.; Alaghmand, S.; Chua, L.H.: Rainfall-runoff modeling using dynamic evolving neural fuzzy inference system with online learning. Proced. Eng. 154, 1103–1109 (2016)

    Article  Google Scholar 

  23. Zaji, A.H.; Bonakdari, H.; Gharabaghi, B.: Reservoir water level forecasting using group method of data handling. ActaGeophys. 66(4), 717–730 (2018)

    Google Scholar 

  24. Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Ebtehaj, I.; Bonakdari, H.: Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques. Soft Comput. 23(23), 12897–12910 (2019)

    Article  Google Scholar 

  25. Singh, B.; Sihag, P.; Pandhiani, S.M.; Debnath, S.; Gautam, S.: Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models. ISH J. Hydraul. Eng. 1–11 (2019)

  26. Kisi, O.; Sanikhani, H.; Cobaner, M.: Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theor. Appl. Climatol. 129(3–4), 833–848 (2017)

    Article  Google Scholar 

  27. Sihag, P.; Esmaeilbeiki, F.; Singh, B.; Pandhiani, S.M.: Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geol. Ecol. Landsc. 4(3), 1–13 (2019)

    Google Scholar 

  28. Heddam, S.: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA. Environ. Sci. Pollut. Res. 21(15), 9212–9227 (2014)

    Article  Google Scholar 

  29. Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A.: Water quality prediction using machine learning methods. Water Qual. Res. J. 53(1), 3–13 (2018)

    Article  Google Scholar 

  30. Sepahvand, A.; Singh, B.; Sihag, P.; Nazari Samani, A.; Ahmadi, H.; Fiz Nia, S.: Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH J. Hydraul. Eng. 1–12 (2019).

  31. Sihag, P.; Kumar, V.; Afghan, F.R.; Pandhiani, S.M.; Keshavarzi, A.: Predictive modeling of PM 2.5 using soft computing techniques: case study—Faridabad, Haryana, India. Air Qual. Atmos. Health 12(12), 1511–1520 (2019)

    Article  Google Scholar 

  32. Mehdipour, V.; Stevenson, D.S.; Memarianfard, M.; Sihag, P.: Comparing different methods for statistical modeling of particulate matter in Tehran, Iran. Air Qual. Atmos. Health 11(10), 1155–1165 (2018)

    Article  Google Scholar 

  33. Nehdi, M.; El Chabib, H.; El Naggar, M.H.: Predicting performance of self-compacting concrete mixtures using artificial neural networks. Mater. J. 98(5), 394–401 (2001)

    Google Scholar 

  34. Dahou, Z.; Sbartaï, Z.M.; Castel, A.; Ghomari, F.: Artificial neural network model for steel–concrete bond prediction. Eng. Struct. 31(8), 1724–1733 (2009)

    Article  Google Scholar 

  35. Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H.: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Const. Build. Mater. 36, 411–418 (2012)

    Article  Google Scholar 

  36. Tighiouart, B.; Benmokrane, B.; Gao, D.: Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Const. Build. Mater. 12(8), 453–462 (1998)

    Article  Google Scholar 

  37. Sihag, P.; Tiwari, N.K.; Ranjan, S.: Modelling of infiltration of sandy soil using gaussian process regression. Model. Earth Syst. Environ. 3(3), 1091–1100 (2017)

    Article  Google Scholar 

  38. Rasmussen, C.E.; Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1, pp. 40–43. MIT press, Cambridge (2006).

  39. Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany) (2006)

  40. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  41. Breiman, L.: Random forests. UC Berkeley TR567 (1999)

  42. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  43. Witten, I.H.; Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. United States of America (2005)

  44. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Vol. 92, pp. 343–348 (1992)

  45. Aldous, D.: The continuum random tree III. In: The Annals of Probability, pp.248–289 (1993)

  46. Cutler, A.; Zhao, G.: Pert-perfect random tree ensembles. Comput. Sci. Stat. 33, 490–497 (2001)

    Google Scholar 

  47. Efron, B.: Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3), 589–599 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kanakubo, T.; Yonemaru, K.; Fukuyama, H.; Fujisawa, M.; Sonobe, Y.: Bond performance of concrete members reinforced with FRP bars. ACI Spec. Publ. 138, 767–767 (1993)

    Google Scholar 

  49. Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Bond of GFRP rebars to ordinary-strength concrete. Spec. Publ. 138, 333–346 (1993)

    Google Scholar 

  50. Ehsani, M.R.; Saadatmanesh, H.; Tao, S.: Design recommendations for bond of GFRP rebars to concrete. J. Struct. Eng. 122(3), 247–254 (1996)

    Article  Google Scholar 

  51. French, C.; Shield, C.; Retika, A.C.: Thermal and Mechanical Fatigue Effects on GFRP Rebar-Concrete Bond (No. CTS-97-10) (1997)

  52. Tighiouart, B.; Benmokrane, B.; Mukhopadhyaya, P.: Bond strength of glass FRP rebar splices in beams under static loading. Const. Build. Mater. 13(7), 383–392 (1999)

    Article  Google Scholar 

  53. Cosenza, E.; Manfredi, G.; Pecce, M.; Realfonzo, R.: Bond between glass fiber reinforced plastic reinforcing bars and concrete: experimental analysis. Spec. Publ. 188, 347–358 (1999)

    Google Scholar 

  54. Shield, C.K.; French, C.W.; Hanus, J.P.: Bond of glass fiber reinforced plastic reinforcing bar for consideration in bridge decks. Spec. Publ. 188, 393–406 (1999)

    Google Scholar 

  55. Pecce, M.; Manfredi, G.; Realfonzo, R.; Cosenza, E.: Experimental and analytical evaluation of bond properties of GFRP bars. J. Mater. Civil Eng. 13(4), 282–290 (2001)

    Article  Google Scholar 

  56. DeFreese, J.M.; Roberts-Wollmann, C.L.: Glass Fiber Reinforced Polymer Bars as Top Mat Reinforcement for Bridge Decks. Virginia Center for Transportation Innovation and Research (2002)

  57. Maji, A.; Orozco, A.L.: Prediction of bond failure and deflection of carbon fiber-reinforced plastic reinforced concrete beams. Exp. Mech. 45(1), 35–41 (2005)

    Article  Google Scholar 

  58. Okelo, R.: Realistic bond strength of FRP rebars in NSC from beam specimens. J. Aerosp. Eng. 20(3), 133–140 (2007)

    Article  Google Scholar 

  59. Aly, R.; Benmokrane, B.; Ebead, U.: Tensile lap splicing of fiber-reinforced polymer reinforcing bars in concrete. ACI Struct. J. 103(6), 857 (2006)

    Google Scholar 

  60. Thamrin, R.; Kaku, T.: Bond behavior of CFRP bars in simply supported reinforced concrete beam with hanging region. J. Compos. Const. 11(2), 129–137 (2007)

    Article  Google Scholar 

  61. Won, J.P.; Park, C.G.; Kim, H.H.; Lee, S.W.; Jang, C.I.: Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Compos. B Eng. 39(5), 747–755 (2008)

    Article  Google Scholar 

  62. Aly, R.; Benmokrane, B.: Bond splitting strength of lap splicing of GFRP bars in concrete. In: Proceedings of the 33rd Annual General Conference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2010 (2010)

  63. Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Sihag.

Appendix I

Appendix I

See Table

Table 7 Details of training and total data sets

7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M.S., Pandhiani, S.M., Kashyap, V. et al. Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques. Arab J Sci Eng 46, 4951–4969 (2021). https://doi.org/10.1007/s13369-020-05314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05314-8

Keywords

Navigation