Skip to main content
Log in

Generating planar distributions of soot particles from luminosity images in turbulent flames using deep learning

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a computational method based on deep learning (DL) to generate planar distributions of soot particles in turbulent flames from line-of-sight luminosity images. A conditional generative adversarial network (C-GAN) was trained using flame luminosity and planar laser-induced incandescence (LII) images simultaneously recorded in a turbulent sooting flame with an exit Reynolds number of 15,000. Such a training built up the underlying relationship between the two types of images i.e., a predictive model which was then used to predict LII images from luminosity images and the accuracy was assessed using four different methods. Results show that the model is effective and capable of generating LII images with acceptable prediction accuracies of around 0.75. The model was also found to be applicable over a range of heights in the flames, as well as for the flames with a range of exit Reynolds numbers spanning from 8000 to 20,000. Besides, the probability density function (PDF) of LII signals in different flames can also be predicated using the model. This work, for the first time, demonstrates the feasibility of predicting planar signals from corresponding line-of-sight signals from turbulent flames, which potentially offers a much simpler optical arrangement for a modest trade-off in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst 30(1), 89–123 (2005)

    Article  Google Scholar 

  2. J.C. Oefelein, R.W. Schefer, R.S. Barlow, AIAA J. 44(3), 418–433 (2006)

    Article  ADS  Google Scholar 

  3. M. Aldén, J. Bood, Z. Li, M. Richter, Proc. Combust. Inst 33(1), 69–97 (2011)

    Article  Google Scholar 

  4. C.F. Kaminski, J. Hult, M. Aldén, Appl. Phys. B 68(4), 757–760 (1999)

    Article  ADS  Google Scholar 

  5. A. Verdier, J. Marrero Santiago, A. Vandel, G. Godard, G. Cabot, B. Renou, Combust. Flame 193, 440–452 (2018)

    Article  Google Scholar 

  6. Y. Gao, X. Yang, C. Fu, Y. Yang, Z. Li, H. Zhang, F. Qi, Appl. Opt. 58(10), C112–C120 (2019)

    Article  Google Scholar 

  7. J. Köser, T. Li, N. Vorobiev, A. Dreizler, M. Schiemann, B. Böhm, Proc. Combust. Inst 37(3), 2893–2900 (2019)

    Article  Google Scholar 

  8. S. Roy, P.S. Hsu, N. Jiang, M.N. Slipchenko, J.R. Gord, Opt. Lett. 40(21), 5125–5128 (2015)

    Article  ADS  Google Scholar 

  9. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. (2015), p.

  10. M. Köhler, I. Boxx, K.P. Geigle, W. Meier, Appl. Phys. B 103(2), 271 (2011)

    Article  ADS  Google Scholar 

  11. V. Beyer, D.A. Greenhalgh, Appl. Phys. B 83(3), 455 (2006)

    Article  ADS  Google Scholar 

  12. Z. Wang, P. Stamatoglou, B. Zhou, M. Aldén, X.-S. Bai, M. Richter, Fuel 234, 1528–1540 (2018)

    Article  Google Scholar 

  13. H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, J. Kautz, Super SloMo: high quality estimation of multiple intermediate frames for video interpolation, in arXiv e-prints, (2017), p.

  14. Z.S. Li, B. Li, Z.W. Sun, X.S. Bai, M. Aldén, Combust. Flame 157(6), 1087–1096 (2010)

    Article  Google Scholar 

  15. B.J. Kirby, R.K. Hanson, Appl. Phys. B 69(5), 505–507 (1999)

    Article  ADS  Google Scholar 

  16. D. Zeng, P. Chatterjee, Y. Wang, Proc. Combust. Inst 37(1), 825–832 (2019)

    Article  Google Scholar 

  17. C.R. Shaddix, T.C. Williams, Proc. Combust. Inst 36(3), 4051–4059 (2017)

    Article  Google Scholar 

  18. J. Yang, X. Dong, Q. Wu, M. Xu, Combust. Flame 188, 66–76 (2018)

    Article  Google Scholar 

  19. G.J. Nathan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, P.R. Medwell, Q.N. Chan, Prog. Energy Combust. Sci. 38(1), 41–61 (2012)

    Article  Google Scholar 

  20. Z.W. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, Proc. Combust. Inst 35(3), 3673–3680 (2015)

    Article  Google Scholar 

  21. B. Menkiel, A. Donkerbroek, R. Uitz, R. Cracknell, L. Ganippa, Combust. Flame 159(9), 2985–2998 (2012)

    Article  Google Scholar 

  22. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333 (2006)

    Article  ADS  Google Scholar 

  23. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83(3), 397 (2006)

    Article  ADS  Google Scholar 

  24. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436–444 (2015)

    Article  ADS  Google Scholar 

  25. E.Z. Omar, Appl. Phys. B 126(4), 54 (2020)

    Article  ADS  Google Scholar 

  26. L. Zhang, R. Xiong, J. Chen, D. Zhang, Appl. Phys. B 126(1), 18 (2019)

    Article  ADS  Google Scholar 

  27. G. Barbastathis, A. Ozcan, G. Situ, Optica 6(8), (2019)

  28. C. Dong, C.C. Loy, K. He, X. Tang, in Computer Vision—ECCV 2014, (2014)

  29. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, in arXiv e-prints, (2014), p.

  30. Y. Shi, Q. Li, X.X. Zhu, I.E.E.E. Geosci, Remote. Sens. Lett. 16(4), 603–607 (2019)

    Article  Google Scholar 

  31. N. Merkle, S. Auer, R. Muller, P. Reinartz, IEEE J Sel Top Appl Earth Obs Remote Sens 11(6), 1811–1820 (2018)

    Article  ADS  Google Scholar 

  32. A. Osokin, A. Chessel, R. E. C. Salas, F. Vaggi, GANs for biological image synthesis, in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2252–2261 (2017)

  33. D. Gu, Z. Sun, B.B. Dally, P.R. Medwell, Z.T. Alwahabi, G.J. Nathan, Combust. Flame 179, 33–50 (2017)

    Article  Google Scholar 

  34. Z. Sun, B. Dally, Z. Alwahabi, G. Nathan, Proc. Combust. Inst (2020)

  35. C.R. Shaddix, J. Zhang, in 8th US National Combustion Meeting 2013, May 19, 2013—May 22, 2013, (2013)

  36. A. Rowhani, Z.W. Sun, P.R. Medwell, Z.T. Alwahabi, G.J. Nathan, B.B. Dally, Combust. Sci. Technol. 1–19 (2019)

  37. Z.W. Sun, Z.T. Alwahabi, D.H. Gu, S.M. Mahmoud, G.J. Nathan, B.B. Dally, Appl. Phys. B 119(4), 731–743 (2015)

    Article  Google Scholar 

  38. M. Mirza, S. Osindero, Conditional Generative Adversarial Nets, in arXiv e-prints, (2014), p.

  39. P. Isola, J. Zhu, T. Zhou, A.A. Efros, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017)

  40. S. Nowozin, in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014)

  41. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, IEEE Trans Image Process 13(4), 600–612 (2004)

    Article  ADS  Google Scholar 

  42. W. Xue, L. Zhang, X. Mou, A.C. Bovik, IEEE Trans Image Process 23(2), 684–695 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. S.M. Mahmoud, G.J. Nathan, Z.T. Alwahabi, Z.W. Sun, P.R. Medwell, B.B. Dally, Combust. Flame 187, 42–51 (2018)

    Article  Google Scholar 

  44. N.H. Qamar, G.J. Nathan, Z.T. Alwahabi, Q.N. Chan, Combust. Flame 158(12), 2458–2464 (2011)

    Article  Google Scholar 

  45. N. Samuel, T. Diskin, A. Wiesel, IEEE Trans. Signal Process. 67(10), 2554–2564 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Fukushima, S. Miyake, Pattern Recogn. 15(6), 455–469 (1982)

    Article  Google Scholar 

  47. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  48. J. Manin, L.M. Pickett, S.A. Skeen, Two-color diffused back-illumination imaging as a diagnostic for time-resolved soot measurements in reacting sprays, (SAE International, 2013)

  49. M. Koegl, B. Hofbeck, S. Will, L. Zigan, Proc. Combust. Inst 37(4), 4965–4972 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China under Grant No. 52006137, Shanghai Sailing Program, under Grant No. 19YF1423400, as well as China Postdoctoral Science Funding under Grant No. 2016M600313. The experimental research was supported by The Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27022 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Dong, X., Liu, C. et al. Generating planar distributions of soot particles from luminosity images in turbulent flames using deep learning. Appl. Phys. B 127, 18 (2021). https://doi.org/10.1007/s00340-020-07571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07571-9

Navigation