Skip to main content
Log in

On the Hyers–Ulam stability of certain nonautonomous and nonlinear difference equations

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

This article is devoted to the study of certain nonautonomous and nonlinear difference equations of higher order. Our main objective is to formulate sufficient conditions under which the class of difference equations we consider exhibits Hyers–Ulam stability. Our methods rely on the relationship between Hyers–Ulam stability and hyperbolicity for nonautonomous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, D.R., Onitsuka, M.: Best constant for Hyers–Ulam stability of second-order h-difference equations with constant coefficients. Results Math. 74(4), 151 (2019)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.R., Onitsuka, M.: Hyers–Ulam stability for a discrete time scale with two step sizes. Appl. Math. Comput. 344–345, 128–140 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Aulbach, B., Van Minh, N., Zabreiko, P.P.: The concept of spectral dichotomy for linear difference equations. J. Math. Anal. Appl. 185, 275–287 (1994)

    Article  MathSciNet  Google Scholar 

  4. Backes, L., Dragičević, D.: Shadowing for nonautonomous dynamics. Adv. Nonlinear Stud. 19, 425–436 (2019)

    Article  MathSciNet  Google Scholar 

  5. Backes, L., Dragičević, D.: Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. R. Soc. Edinburgh Sect. A. https://doi.org/10.1017/prm.2020.42 (to appear)

  6. Baias, A. R., Popa, D.: On Ulam stability of a third order linear difference equation in Banach spaces. Aequat. Math. 94, 1151–1170 (2020)

  7. Barbu, D., Buşe, C., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 42, 1738–1752 (2015)

    Article  MathSciNet  Google Scholar 

  8. Barbu, D., Buşe, C., Tabassum, A.: Hyers-Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent. Electron. J. Qual. Theory Differ. Equ. 2015(58), 1–12 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Brzdek, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic Press, London (2018)

    MATH  Google Scholar 

  10. Brzdek, J., Popa, D., Xu, B.: Note on nonstability of the linear recurrence. Abh. Math. Semin. Univ. Hambg. 76, 183–189 (2006)

    Article  MathSciNet  Google Scholar 

  11. Brzdek, J., Popa, D., Xu, B.: Remarks on stability of linear recurrence of higher order. Appl. Math. Lett. 23, 1459–1463 (2010)

    Article  MathSciNet  Google Scholar 

  12. Buşe, C., O’Regan, D., Saierli, O., Tabassum, A.: Hyers–Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 140, 908–934 (2016)

    Article  MathSciNet  Google Scholar 

  13. Buşe, C., O’Regan, D., Saierli, O.: Hyers–Ulam stability for linear differences with time dependent and periodic coefficients: the case when the monodromy matrix has simple eigenvalues. Symmetry 219(11), 339 (2019)

    Article  Google Scholar 

  14. Buşe, C., Lupulescu, V., O’Regan, D.: Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. Proc. R. Soc. Edinburgh Sect. A 150, 2175–2188 (2020)

  15. Coppel, W.A.: Dichotomies in Stability Theory. Springer, Berlin, Heidelberg, New-York (1978)

    Book  Google Scholar 

  16. Fukutaka, R., Onitsuka, M.: A necessary and sufficient condition for Hyers-Ulam stability of first-order periodic linear differential equations. Appl. Math. Lett. 100, 106040 (2020)

    Article  MathSciNet  Google Scholar 

  17. Fukutaka, R., Onitsuka, M.: Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient. J. Math. Anal. Appl. 473(2), 1432–1446 (2019)

    Article  MathSciNet  Google Scholar 

  18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  19. Jung, S.-M.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17, 1135–1140 (2004)

    Article  MathSciNet  Google Scholar 

  20. Jung, S.-M.: Hyers–Ulam stability of linear differential equations of first order II. Appl. Math. Lett. 19, 854–858 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jung, S.-M.: Hyers–Ulam stability of linear differential equations of first order III. J. Math. Anal. Appl. 311, 139–146 (2005)

    Article  MathSciNet  Google Scholar 

  22. Li, T., Zada, A.: Connections between Hyers–Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Diff. Equ. 2016((1)), 153 (2016)

    Article  MathSciNet  Google Scholar 

  23. Popa, D.: Hyers–Ulam–Rassias stability of a linear recurrence. J. Math. Anal. Appl. 369, 591–597 (2005)

    Article  MathSciNet  Google Scholar 

  24. Popa, D., Raşa, I.: On the Hyers–Ulam stability of the linear differential equations. J. Math. Anal. Appl. 381, 530–537 (2011)

    Article  MathSciNet  Google Scholar 

  25. Popa, D., Raşa, I.: Hyers–Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math. Comput. 219, 1562–1568 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  27. Wang, J., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr. J. Math. 14, 46 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Fečkan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zada, A., Zada, B.: Hyers–Ulam stability and exponential dichotomy of discrete semigroup. Appl. Math. E-Notes 19, 527–534 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Zada, A., Shah, S.O., Shah, R.: Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problem. Appl. Math. Comput. 271, 512–518 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

D.D. was supported in part by Croatian Science Foundation under the project IP-2019-04-1239 and by the University of Rijeka under the projects uniri-prirod-18-9 and uniri-prprirod-19-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davor Dragičević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragičević, D. On the Hyers–Ulam stability of certain nonautonomous and nonlinear difference equations. Aequat. Math. 95, 829–840 (2021). https://doi.org/10.1007/s00010-020-00774-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-020-00774-7

Keywords

Mathematics Subject Classification

Navigation