Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 13, 2021

Electronic and magnetic properties of Fe-doped GaN: first-principle calculations

  • Adam S. Abdalla , Muhammad Sheraz Khan , Suliman Alameen , Mohamed Hassan Eisa and Osamah Aldaghri

Abstract

We have systematically studied the effect of Fe co-doped on electronic and magnetic properties of wurtzite gallium nitride (GaN) based on the framework of density functional theory (DFT). It is found that GaN doped with Fe at Ga site is more stable than that at N-site. We calculate the electronic structure of pure and single Fe doped GaN within GGA and GGA + U method and find that Fe doped GaN is a magnetic semiconductor with the total magnetization of 5μB. The magnetic coupling between Fe spins in Fe-doped GaN is an antiferromagnetic (AFM) under the super-exchange mechanism.


Corresponding author: Mohamed Hassan Eisa, Department of Physics, College of Science, Sudan University of Science and Technology, Khartoum11113, Sudan; and Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh11623, Saudi Arabia, E-mail:

Funding source: This is a private work , so no fund received.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys., vol. 64, p. R29, 1988, https://doi.org/10.1063/1.341700.Search in Google Scholar

[2] K. Ando, “Seeking room-temperature ferromagnetic semiconductors,” Science, vol. 312, p. 183, 2006, https://doi.org/10.1126/science.1125461.Search in Google Scholar

[3] M. Belkhouane, S. Amari, A. Yakoubi, et al.., “First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5,” J. Magn. Magn Mater., vol. 377, p. 211, 2015, https://doi.org/10.1016/j.jmmm.2014.10.094.Search in Google Scholar

[4] L. Lin, J. Huang, H. Jia, L. Zhu, and H. Tao, “Magnetism in transition metal (Fe, Ni) co-doped 4H-SiC: a first-principles study,” Phys. Scripta, vol. 95, p. 045808, 2020, https://doi.org/10.1088/1402-4896/ab6c40.Search in Google Scholar

[5] H. Saadaoui, X. Luo, Z. Salman, et al.., “Intrinsic ferromagnetism in the diluted magnetic semiconductor Co:TiO2,” Phys. Rev. Lett., vol. 117, p. 227202, 2016, https://doi.org/10.1103/physrevlett.117.227202.Search in Google Scholar

[6] B. Chakraborty, P. K. Nandi, Y. Kawazoe, and L. M. Ramaniah, “Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: a density functional theory study,” Phys. Rev. B, vol. 97, p. 184411, 2018, https://doi.org/10.1103/physrevb.97.184411.Search in Google Scholar

[7] B. A. Davis, B. Chakraborty, N. Kalarikkal, and L. M. Ramaniah, “Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: a DFT study,” J. Magn. Magn Mater., vol. 502, p. 166503, 2020, https://doi.org/10.1016/j.jmmm.2020.166503.Search in Google Scholar

[8] B. Chakraborty and L. M. Ramaniah, “Room temperature d0 ferromagnetism in hole doped Y2O3: widening the choice of host to tailor DMS,” J. Phys. Condens. Matter, vol. 28, p. 336001, 2016, https://doi.org/10.1088/0953-8984/28/33/336001.Search in Google Scholar

[9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and E. D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, no. 5455, p. 1019, 2000, https://doi.org/10.1126/science.287.5455.1019.Search in Google Scholar

[10] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, et al.., “Room temperature ferromagnetic properties of (Ga, Mn) N,” Appl. Phys. Lett., vol. 79, p. 3473, 2001, https://doi.org/10.1063/1.1419231.Search in Google Scholar

[11] P. Sharma, A. Gupta, K. V. Rao, et al..., “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO,” Nat. Mater., vol. 2, no. 10, p. 673, 2003, https://doi.org/10.1038/nmat984.Search in Google Scholar

[12] N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, “Ferromagnetism in transition-metal-doped TiO2 thin films,” Phys. Rev. B, vol. 70, p. 195204, 2004, https://doi.org/10.1103/physrevb.70.195204.Search in Google Scholar

[13] M. A. Kamran, R. Liu, L. J. Shi, et al.., “Tunable emission properties by ferromagnetic coupling Mn (II) aggregates in Mn-doped CdS microbelts/nanowires,” Nanotechnology, vol. 25, no. 38, p. 385201, 2014, https://doi.org/10.1088/0957-4484/25/38/385201.Search in Google Scholar

[14] A. Haury, A. Wasiela, A. Arnoult, et al.., “Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells,” Phys. Rev. Lett., vol. 79, p. 511, 1997, https://doi.org/10.1103/physrevlett.79.511.Search in Google Scholar

[15] M. Rais-Zadeh, V. J. Gokhale, A. Ansari, et al.., “Gallium nitride as an electromechanical material,” J. Microelectron. Syst., vol. 23, no. 6, p. 1252, 2014, https://doi.org/10.1109/jmems.2014.2352617.Search in Google Scholar

[16] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrilov, Semiconductor Materials GaN, InN, SiC, SiGe, New York, John Wiley & Sons, Inc., 2001.Search in Google Scholar

[17] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, p. 1687, 1994, https://doi.org/10.1063/1.111832.Search in Google Scholar

[18] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, p. 956, 1998, https://doi.org/10.1126/science.281.5379.956.Search in Google Scholar

[19] W. A. Prabowo, F. Fathurrahman, A. Melati, and H. K. Dipojono, “The investigation of electronic structure of transition metal doped TiO2 for diluted magnetic semiconductor applications: A first principle study,” Proc. Eng., vol. 170, pp. 141–147, 2017.10.1016/j.proeng.2017.03.032Search in Google Scholar

[20] G. X. Chen, D. D. Wang, J. Q. Wen, A. P. Yang, and J. M. Zhang, “Structural, electronic, and magnetic properties of 3d transition metal doped GaN nanosheet: a first‐principles study,” Int. J. Quant. Chem., vol. 116, no. 13, p. 1000, 2016, https://doi.org/10.1002/qua.25118.Search in Google Scholar

[21] H. X. Liu, S. Y. Wu, R. K. Singh, et al.., “Observation of ferromagnetism above 900 K in Cr–GaN and Cr–AlN,” Appl. Phys. Lett., vol. 85, p. 4076, 2004, https://doi.org/10.1063/1.1812581.Search in Google Scholar

[22] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, p. 1758, 1999, https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

[23] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, p. 558, 1993, https://doi.org/10.1103/physrevb.47.558.Search in Google Scholar

[24] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, p. 15, 1996, https://doi.org/10.1016/0927-0256(96)00008-0.Search in Google Scholar

[25] Y. Wang and J. P. Perdew, “Spin scaling of the electron-gas correlation energy in the high-density limit,” Phys. Rev. B, vol. 43, p. 8911, 1991, https://doi.org/10.1103/physrevb.43.8911.Search in Google Scholar

[26] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, p. 3865, 1996, https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

[27] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., vol. 118, p. 8207, 2003, https://doi.org/10.1063/1.1564060.Search in Google Scholar

[28] A. Fleszar and W. Hanke, “Electronic structure of IIB−VI semiconductors in the GW approximation,” Phys. Rev. B, vol. 71, p. 045207, 2005, https://doi.org/10.1103/physrevb.71.045207.Search in Google Scholar

[29] M. S. Khan, L. Shi, and B. Zou, “First principle calculations on electronic, magnetic and optical properties of Mn doped and N co-doped CdS,” Mater. Res. Express, vol. 6, no. 11, p. 116126, 2019, https://doi.org/10.1088/2053-1591/ab4e40.Search in Google Scholar

[30] G. Murali, R. D. Amaranatha, B. Poornaprakash, R. P. Vijayalakshmi, and R. N. Madhusudhana, “Dopant induced room temperature ferromagnetism in Fe-Doped CdS nanoparticles,” Adv. Mater. Res., vol. 584, pp. 78–181, 2012, https://doi.org/10.4028/www.scientific.net/amr.584.178.Search in Google Scholar

[31] A. Nabi, Z. Akhtar, T. Iqbal, A. Ali, and M. A. Javid, “The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS Mn:Cr:CdS: first principles calculations,” J. Semiconduct., vol. 38, no. 7, p. 073001, 2017, https://doi.org/10.1088/1674-4926/38/7/073001.Search in Google Scholar

[32] A. Nabi, “The electronic and the magnetic properties of Mn doped wurtzite CdS: First principles calculations,” Comput. Mater. Sci., vol. 1, no. Part A, pp. 210–218, 2016.10.1016/j.commatsci.2015.10.039Search in Google Scholar

[33] G. Yao, G. Fan, S. Zheng, et al.., “The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS Mn:Cr:CdS: first principles calculations,” “First-principles analysis on V-doped GaN,” Opt. Mater., vol. 34, pp. 1593–1597, 2012, https://doi.org/10.1016/j.optmat.2012.04.001.Search in Google Scholar

[34] P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, “Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN,” Phys. Rev. B, vol. 77, p. 075202, 2008, https://doi.org/10.1103/physrevb.77.075202.Search in Google Scholar

[35] M. S. Khan, L. Shi, H. Ullah, X. Yang, and B. Zou, “Ab initio study of optoelectronic and magnetic properties of Mn-doped ZnS with and without vacancy defects,” J. Phys. Condens. Matter, vol. 31, p. 485706, 2019, https://doi.org/10.1088/1361-648x/ab3b77.Search in Google Scholar

[36] M. S. Khan, L. Shi, and B. Zou, “Impact of vacancy defects on optoelectronic and magnetic properties of Mn-doped ZnSe,” Comput. Mater. Sci., vol. 174, p. 109493, 2020, https://doi.org/10.1016/j.commatsci.2019.109493.Search in Google Scholar

[37] M. S. Khan, L. Shi, B. Zou, and S. Ali, “Theoretical investigation of optoelectronic and magnetic properties of Co-doped ZnS and (Al, Co) co-doped ZnS,” Comput. Mater. Sci., vol. 174, p. 109491, 2020.10.1016/j.commatsci.2019.109491Search in Google Scholar

[38] M. S. Khan, L. Shi, X. Yang, S. Ali, H. Ullah, and B. Zou, “Optoelectronic and magnetic properties of Mn-doped and Mn–C co-doped Wurtzite ZnS: a first-principles study,” J. Phys. Condens. Matter, vol. 31, p. 395702, 2019, https://doi.org/10.1088/1361-648x/ab2d98.Search in Google Scholar

Received: 2020-07-29
Accepted: 2020-12-08
Published Online: 2021-01-13
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2020-0211/html
Scroll to top button