Skip to main content
Log in

Morphometry and Modeling of Label-Free Human Melanocytes and Melanoma Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A combination of light microscopy and image processing was applied to investigate morphology of label-free primary-melanocytes and melanoma cells. A novel methodological approach based on morphology of nuclear body was used to find those single cells, which were at the same phase of cell cycle. The area and perimeter of melanocytes and melanoma cells were quantified. We found that there was a significant difference between area and perimeter of adendritic-shaped melanocytes with melanoma cells and the reason(s) of this finding was speculated. Finally, a theoretical model based on losing dendrites was proposed, which was in agreement with our experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all the data and MATLAB code supporting the findings of this study are available upon request from the corresponding author.

References

  1. Bandyopadhyay, D., Timchenko, N., Suwa, T., Hornsby, P. J., Campisi, J., & Medrano, E. E. (2001). The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Experimental Gerontology, 36(8), 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  2. Hearing, V. J., & Leong, S. P. L. (2007). From melanocytes to melanoma: the progression to malignancy. Springer Science & Business Media.

  3. Haass, N. K., Smalley, K. S. M., Li, L., & Herlyn, M. (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Research, 18(3), 150–159.

    Article  CAS  PubMed  Google Scholar 

  4. Hall, A. (2005). Rho gtpases and the control of cell behaviour. Biochemical Society Transactions, 33(5), 891–895.

    Article  CAS  PubMed  Google Scholar 

  5. Halaban, R. (2000). The regulation of normal melanocyte proliferation. Pigment Cell Research, 13(1), 4–14.

    Article  CAS  PubMed  Google Scholar 

  6. Krengel, S., Grotelüschen, F., Bartsch, S., & Tronnier, M. (2004). Cadherin expression pattern in melanocytic tumors more likely depends on the melanocyte environment than on tumor cell progression. Journal of Cutaneous Pathology, 31(1), 1–7.

    Article  PubMed  Google Scholar 

  7. Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J. A., Bastian, B. C., Springer, C., & Marais, R. (2006). In melanoma, ras mutations are accompanied by switching signaling from braf to craf and disrupted cyclic amp signaling. Cancer Research, 66(19), 9483–9491.

    Article  CAS  PubMed  Google Scholar 

  8. Sarna, M., Zadlo, A., Hermanowicz, P., Madeja, Z., Burda, K., & Sarna, T. (2014). Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells. Experimental Dermatology, 23(11), 813–818.

    Article  CAS  PubMed  Google Scholar 

  9. Fink-Puches, R., Hofmann-Wellenhof, R., Smolle, J., Helige, C., & Kerl, H. (1997). Cytoplasmic microtubules in two different mouse melanoma cell lines: a qualitative and quantitative analysis using confocal laser scanning microscopy and computer-assisted image analysis. Journal of Cutaneous Pathology, 24(6), 350–355.

    Article  CAS  PubMed  Google Scholar 

  10. Busam, K. J., Charles, C., Lee, G., & Halpern, A. C. (2001). Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy. Modern Pathology, 14(9), 862–868.

    Article  CAS  PubMed  Google Scholar 

  11. Yamashita, T., Kuwahara, T., Gonzalez, S., & Takahashi, M. (2005). Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy. Journal of Investigative Dermatology, 124(1), 235–240.

    Article  CAS  Google Scholar 

  12. Ahlgrimm-Siess, V., Laimer, M., Rabinovitz, H. S., Oliviero, M., Hofmann-Wellenhof, R., Marghoob, A. A., & Scope, A. (2018). Confocal microscopy in skin cancer. Current Dermatology Reports, 7(2), 105–118.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sarna, M., Zadlo, A., Pilat, A., Olchawa, M., Gkogkolou, P., Burda, K., Böhm, M., & Sarna, T. (2013). Nanomechanical analysis of pigmented human melanoma cells. Pigment Cell & Melanoma Research, 26(5), 727–730.

    Article  CAS  Google Scholar 

  14. Weder, G., Hendriks-Balk, M. C., Smajda, R., Rimoldi, D., Liley, M., Heinzelmann, H., Meister, A., & Mariotti, A. (2014). Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 141–148.

    Article  CAS  Google Scholar 

  15. Sarna, M., Zadlo, A., Czuba-Pelech, B., & Urbanska, K. (2018). Nanomechanical phenotype of melanoma cells depends solely on the amount of endogenous pigment in the cells. International Journal of Molecular Sciences, 19(2), 607.

    Article  PubMed Central  Google Scholar 

  16. Sarna, M., Krzykawska-Serda, M., Jakubowska, M., Zadlo, A., & Urbanska, K. (2019). Melanin presence inhibits melanoma cell spread in mice in a unique mechanical fashion. Scientific Reports, 9(1), 1–9.

    Article  CAS  Google Scholar 

  17. Hejna, M., Jorapur, A., Song, J. S., & Judson, R. L. (2017). High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells. Scientific Reports, 7(1), 1–12.

    Article  CAS  Google Scholar 

  18. Eisinger, M., & Marko, O. (1982). Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proceedings of the National Academy of Sciences, 79(6), 2018–2022.

    Article  CAS  Google Scholar 

  19. Guberman, J. M., Fay, A., Dworkin, J., Wingreen, N. S., & Gitai, Z. (2008). Psicic: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS Computational Biology, 4(11), e1000233.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Phair, R. D., & Misteli, T. (2000). High mobility of proteins in the mammalian cell nucleus. Nature, 404(6778), 604–609.

    Article  CAS  PubMed  Google Scholar 

  21. Muro, E., Gébrane-Younès, J., Jobart-Malfait, A., Louvet, E., Roussel, P., & Hernandez-Verdun, D. (2010). The traffic of proteins between nucleolar organizer regions and prenucleolar bodies governs the assembly of the nucleolus at exit of mitosis. Nucleus, 1(2), 202–211.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, W.-C., Wu, P.-H., Phillip, J. M., Khatau, S. B., Choi, J. M., Dallas, M. R., Konstantopoulos, K., Sun, S. X., Lee, J. S. H., & Hodzic, D., et al. (2013). Functional interplay between the cell cycle and cell phenotypes. Integrative Biology, 5(3), 523–534.

    Article  CAS  PubMed  Google Scholar 

  23. Weber, S. C., & Brangwynne, C. P. (2015). Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Current Biology, 25(5), 641–646.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, L., & Brangwynne, C. P. (2015). Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Current Opinion in Cell Biology, 34, 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tobey, R. A., Valdez, J. G., & Crissman, H. A. (1988). Synchronization of human diploid fibroblasts at multiple stages of the cell cycle. Experimental Cell Research, 179(2), 400–416.

    Article  CAS  PubMed  Google Scholar 

  26. Ballabeni, A., Park, I.-H., Zhao, R., Wang, W., Lerou, P. H., Daley, G. Q., & Kirschner, M. W. (2011). Cell cycle adaptations of embryonic stem cells. Proceedings of the National Academy of Sciences, 108(48), 19252–19257.

    Article  CAS  Google Scholar 

  27. Kues, W. A., Anger, M., Carnwath, J. W., Paul, D., Motlik, J., & Niemann, H. (2000). Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biology of Reproduction, 62(2), 412–419.

    Article  CAS  PubMed  Google Scholar 

  28. Sheval, E. V., & Polyakov, V. Y. (2006). Visualization of the chromosome scaffold and intermediates of loop domain compaction in extracted mitotic cells. Cell Biology International, 30(12), 1028–1040.

    Article  CAS  PubMed  Google Scholar 

  29. Bertolotto, C., Abbe, P., Englaro, W., Ishizaki, T., Narumiya, S., Boquet, P., Ortonne, J.-P., & Ballotti, R., et al. (1998). Inhibition of rho is required for camp-induced melanoma cell differentiation. Molecular Biology of the Cell, 9(6), 1367–1378.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lambert, J., Haeghen, Y. V., Vancoillie, G., Naeyaert, J. M., Onderwater, J., Koerten, H. K., & Mommaas, A. M. (1998). Myosin v colocalizes with melanosomes and subcortical actin bundles not associated with stress fibers in human epidermal melanocytes. Journal of Investigative Dermatology, 111(5), 835–840.

    Article  CAS  Google Scholar 

  31. Hammer, J. A., & Sellers, J. R. (2012). Walking to work: roles for class v myosins as cargo transporters. Nature Reviews Molecular Cell Biology, 13(1), 13–26.

    Article  CAS  Google Scholar 

Download references

Author Contributions

B.S.G. and M.M.R. carried out lab work, partly participated in data analysis. M.M.R. provided medical support from the Skin Research Center of Shahid Beheshti University of Medical Sciences and Health Services for the epidermal sample. S.T. carried out image processing, statistical analysis, and modeling. HNM and S.T. conducted the study. HNM supervised and provided the financial support for the conduct. The manuscript was drafted by ST with help of others. All authors gave the final approval for publication. S.T. and B.S.G. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharareh Tavaddod or Hossein Naderi-Manesh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavaddod, S., Shojaedin-Givi, B., Mahmoudi-Rad, M. et al. Morphometry and Modeling of Label-Free Human Melanocytes and Melanoma Cells. Cell Biochem Biophys 79, 253–260 (2021). https://doi.org/10.1007/s12013-020-00963-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00963-w

Keywords

Navigation